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Abstract

Inhibitor of apoptosis-stimulating protein of p53 (iASPP) overexpression is
associated with diverse human tumors, including lung cancer, colorectal cancer,
prostate cancer, acute leukemia, hepatocellular carcinoma, cervical cancer, and
ovarian cancer. This study aims to find new and potent inhibitors for the iASPP drug
target. Using pharmacophore-based virtual screening, molecular docking, and
molecular dynamics simulation an integrated strategy was developed to find highly
effective iASPP inhibitors. Subsequently, the pharmacophore model was employed
as a screening query to find promising inhibitors from the ZINC database. Total
36/12000 hits were identified against the iASPP drug target. The binding mode of
the promising identified inhibitors was predicted by a molecular docking study. To
evaluate the stability of the newly identified inhibitors top 03 best docking scores
compounds were subjected to MD simulation. MD simulation and binding energy
calculation confirmed that the compounds including ZINC001361049159,
ZINC001361124195, and ZINC001545869876 were stable. The MD simulation
analysis indicated that among all the compounds ZINC001361049159 was the most
potent. These newly designed iASPP inhibitors could be used as starting material to
identify new and potent anti-cancer drugs.

1. Introduction

One of the leading causes of cancer-related death
globally is considered to be lung cancer [1]. Despite the
increased focus on preventive healthcare, an estimated
1.8 million new instances of lung cancer are diagnosed
each year, with non-small cell lung cancer (NSCLC)
accounting for the most of these cases. Target treatments
are improving lung cancer patients' clinical results, but
drug resistance is a major problem [2]. New treatments
are therefore required. Cell division, an essential process
that enables cells to proliferate, replicate their DNA, and
divide, is generally altered in cancer. Signaling pathways
that include numerous regulators, including p53, often
regulate the cell cycle. The P53 gene function in
preserving stability by ensuring that replication errors are
fixed, this regulator may defend the genome [3]. As a
result, p53 deregulation could prevent cell cycle arrest,
apoptosis, senescence, and autophagy. According to a
number of studies, the binding of MDM2 and subsequent
induction of p53 proteasome degradation inhibits the
activity of p53. Additionally, the majority of
malignancies have been found to have a high p53
mutation rate [4]. The mutant p53 may develop

carcinogenic activities by interfering with its
downstream gene expressions [5].

P53 is involved in the control of the epithelial-to-
mesenchymal transition and the features of cancer stem
cells in addition to cell proliferation [6]. Therefore,
restoring wild-type p53 function may pave the way for
the treatment of cancer. Increasing evidence
demonstrates that the PPP1R13L gene, which encodes
iASPP protein overexpression is linked to malignancies
[7]. ASPP1, ASPP2 and iASPP are the members of the
p53 family of proteins. The first two serve as typical p53
activators whereas iASPP functions as an inhibitor that
can directly reduce the apoptotic transactivation potential
of p53. iASPP can also stimulate p53-independent
carcinogenesis and suppress the apoptotic activities of
p63 and p73 [8]. iASPP is considered to promote
carcinogenesis through p53-independent mechanisms,
primarily by preventing p63 and p73 from triggering
apoptosis. Notably, iASPP can induce apoptosis in
healthy cells by inhibiting nuclear factor-B (NF-B).
iASPP overexpression is associated with diverse human
tumors, such as lung cancer, colon cancer, prostate
cancer, acute leukemia, head and neck carcinoma,
hepatocellular carcinoma, and ovarian cancer [9]. iASPP
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can be broadly classified into 2 isoforms, each of which
has 407 and 828 amino acids. A potential strategy for
regaining p53 function could be possible by focusing on
and targeting iASPP [10].

Developing a new drug is costly, and time-consuming
and the estimated cost ranging from $314 million to $2.8
billion [11]. Therefore, new strategies are required to
address these financial and time-related issues. Modern
drug discovery relies extensively on computer-aided
drug design (CADD), which has grown into a key tool
for the pharmaceutical industry. Structure and ligand-
based drug design (LBDD) are two broad categories of
CADD. LBDD is usually preferred if the 3D structure of
the target is unknown [12]. Nowadays, pharmacophore-
modeling is consistently used in medicinal chemistry
labs [13]. By using a common feature-based alignment, it
can more precisely and quickly find new and potent
inhibitors against the drug targets [14]. In this study, the
X-ray crystallographic structure of the iASPP was used
to build a pharmacophore model. A number of iASPP
inhibitors were successfully identified by in silico
approaches.

2. Method

Figure 1 shows the workflow of the study carried out for
new inhibitors identification.

Figure 1. Systematic workflow describing the computational
identification of new inhibitors for iASPP drug target.

2.1 Pharmacophore Model Generation and
Evaluation

The X-ray structure of iASPP retrieved from the PDB
database (PDB ID: 6RZ3) [15] was used for
pharmacophore model generation. The most
representative feature pharmacophore model of the
iASPP active site which made interaction with the ligand
was developed by using the Molecular Operating
Environment (MOE) pharmacophore generation protocol
[16]. The pharmacophore model was evaluated by the
GH score method [17]. A database of 600 compounds
was developed with 100 active compounds while the
remaining compounds were inactive. The database was
utilized to assess the pharmacophore model's capacity to
discriminate between active and inactive compounds.

Using the MOE-available pharmacophore search 
procedure, the database screening was carried out. To 
validate the developed pharmacophore model the 
goodness-of-hit score (GH) was applied. The null and 
ideal models can be indicated by 0 and 1 GH scores 
respectively [18].

2.2 Docking Study

The 3D structure of iASPP (PDB code: 6RZ3) was 
downloaded from the PDB database. In order to add 
hydrogen atoms to the receptor 3D protonation was 
carried out [19,20]. Energy minimization was carried out 
for all the ligands as well as the receptor and the receptor. 
Compounds in lowest energy form were further 
processed [19]. Further, 12000 compounds were 
retrieved from the ZINC database. Molecular docking 
methods can be used to predict ligands and receptor 
interactions. MOE site finder option was used to predict 
the active site. Five conformers in total were generated 
for each compound and docking was performed using 
GBVI/WSA score function [21,22].

2.3 MD Simulation

Molecular dynamics simulations were run with the help 
of the AMBER 22 package [23]. The FF14SB was 
employed as the protein force field while the GAFF was 
used for the ligands [24]. At a distance of 10 Å, 
complexes were soaked in a TIP3P water box. The 
complex charge was neutralized by introducing the 
appropriate number of sodium ions [25]. Long-range 
electrostatic interactions were handled by the particle 
mesh Ewald (PME) during the simulation [26]. Then 
5000 steps of the steepest descent and 10000 steps of 
conjugate gradient were applied for energy minimization. 
The systems were then each slowly heated from 0 to 300 
K [21,30]. All the systems were then equilibrated and the 
100 ns production process was run under constant 
temperature and pressure. Finally, trajectory analysis was 
performed using the CPPTRAJ [27].

2.4 MMGBSA Analysis

The MMGBSA approach was applied to estimate the 
binding free energy between ligands and protein 
complexes [23]. For binding free energy calculation the 
last 500 frames were used. The free energy calculation 
was performed using the following equation.

Gbind  =ΔGcomplex  −[ΔGreceptor  +ΔGligand ]

3. Results

3.1 Pharmacophore Model Generation

A five features pharmacophore model was developed 
including three hydrogen bond acceptors, one 
hydrophobic, and one Don and Acc. Consequently, these 
features may be regarded as crucial in the search for new 
iASPP inhibitors. Figure 2 illustrates the pharmacophore 
model developed in MOE software. Before using, the 
pharmacophore model for virtual screening the model 
was validated by the GH score.
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Figure 2. The generated pharmacophore model in MOE
software. Pharmacophore features are color-coded, Pink (F1:
Don, Acc), Cyan (F2, F3, F5 acceptor), and green (F4: Hyd).

3.2 Model Validation and Database Screening

To validate the pharmacophore model, an internal
database was prepared that contains the active
compounds and the decoys. The internal database
contains 100 active compounds for the iASPP drug target
retrieved from the Binding databank database while 500
decoys (inactive) are generated by the DUDE database.
The pharmacophore model was utilized to conduct an
internal database screening to evaluate the model's
discriminating power. Table 1 presents the results of the
calculation of several important metrics, of model
validation. A model is considered validated when its GH
score is greater than 0.7. It was found to be 0.85 for our
model, suggesting that the pharmacophore model
performed well in differentiating between active and
inactive compounds. The validated pharmacophore
model was employed for the virtual screening of ZINC
database to find promising molecules against the iASPP
drug target. A total of 36\12000 compounds were found
as active by the pharmacophore model

Table 1. Pharmacophore model validation by the GH scoring method

S. No Parameters Outcome
1 Total compounds in internal database (D) 600
2 Total active compounds in internal database (A) 100
3 Total hits (Ht) 68
4 Active hits (Ha) 64
5 % Yield of actives ((Ha/Ht) *100) 94
6 % Ratio of actives ((Ha/A) *100) 64
7 Enrichment factor (E) ((Ha *D)/(Ht * A)) 6
8 GH score 0.85

3.3 Molecular Docking Analysis

All 36 active hits were docked against the iASPP
receptor. All the compounds accommodate well into the
active site of the iASPP drug target. Out of 36 active hits,
ZINC001361049159 was predicted potent with an S
score of -7.12Kcal/mol. The compound
ZINC001361049159 established four hydrogen bonds
with GLN753, ASP791, GLU752, two hydrogen bonds
with ARG790, and TRP799, and one Pi-H interaction
with THR 722 residues. ZINC001361124195 revealed
an S score of -6.13 and made five bonds with the binding
site of the receptor. The compound ZINC001361124195
made two hydrogen bonds with ASP791, GLN753, one

hydrogen bond with ARG812. The compound formed
one Pi-H contact with Pro793 and one pi-cation bond
with Arg812 amino acid of the receptor. The S score of
ligand ZINC001545869876 was predicted as -6.10. The
hit ZINC001545869876 established two H-donor, one H-
acceptor and two Pi-H contacts with ASP797, GLU752,
THR796 and Asp791 active site residues respectively.
Table 2 describes the residues involved in interaction for
the 12 best hits. For docking study, NSC59984 was taken
as the control compound [28]. The three-dimensional
interactions of the three best-docked compounds along
with the control compound are illustrated in Figure 3.
Table 3 shows the 2D structures of the most potent
compounds.

Table 2. The docking score and residues involved in interaction for the top 12 best docking scores compounds of the ZINC database.

ZINC ID Interacting residues Docking score Kcal/mol
ZINC001361124195 ASP791, GLN753, ARG812, PRO793 -6.13
ZINC001361049159 GLN753, ASP791, GLU752, ARG790, TRP799, THR722 -7.12
ZINC001545869876 ASP797, GLU752, THR796, ASP791 -6.10
ZINC000015004077 ARG812, PRO793, THR796 -4.93
ZINC001359890400 GLU732, PHE720, TRP799, ARG812 -5.64
ZINC001361126467 GLN753, ASP791, GLN753, ARG812 -5.63
ZINC001361180919 GLU752, ARG812, PHE731, PHE720 -6.03
ZINC001492607841 GLU752, PHE731, ARG812 -6.13
ZINC001545866071 PHE720, GLU752, THR796 -5.64
ZINC001360049822 ASP797, PHE720, ARG812, THR729 -5.60
ZINC000245280751 GLU752, GLU732, ARG812 -5.86
ZINC001360448324 ASP791, THR796, ARG790 -5.12
NSC59984 GLU752, ARG790, TRP788 -5.10
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Table 3. 2D structures of the most potent compounds as well as
the reference compoun

Figure 3. 3D interactions of (A) ZINC001361124195, (B) ZINC001361049159 and (C) ZINC001545869876, and (D) control
compound with the iASPP drug target. The blue dash line indicates the bonds; the yellow sticks indicate the active site residues of the
iASPP.

d

Compound ID 2D structures

ZINC001361124195

ZINC001361049159

ZINC001545869876

Control
(NSC59984)

3.4 Post Simulation Analysis

3.4.1 Stability of Protein-Ligand Complexes

By analyzing the RMSD, the dynamic stability and 
structural changes were investigated [29]. The molecular 
dynamics simulation results showed that the 
ZINC001361049159-iASPP complex reached 
equilibration at a time of 21 ns and that the system was 
observed to be stable for up to 21 ns (Figure 4). However, 
fluctuations were observed from 21-42ns then system 
converged and remained stable till 100ns MD simulation. 
The RMSD of the ZINC001361124195-iASPP complex 
was stable during the first 18ns after that deviations were 
observed till 50ns however, after 50ns the 
complex revealed stability and persisted stable till 
100ns. The RMSD analysis shows that the 
ZINC001545869876-iASPP complex was stable during 
the first 5ns after that, major deviations were detected 
and the system revealed unstable behavior till 50ns 
after that the RMSD converged and the system 
achieved consistent stability till the end of the 
simulation. As compared to all other systems the 
RMSD of the Apo system was very high and the system 
revealed unstable behavior till 45ns then the system 
revealed stability till 100ns. As compared to all other 
systems the RMSD was found to be highly stable for 
the ZINC001361049159-iASPP system. In 
comparison to the control system the RMSD plot for all
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the identified hits was more stable. RMSD plot of all the
systems, the control system and the Apo state is
displayed in Figure 4.

Figure 4. RMSD plots for ZINC001361124195-iASPP (Cyan),
ZINC001361049159-iASPP (Blue), ZINC001545869876-
iASPP (Green), Control (Black) and Apo-state (Red).

3.4.2 Residue Flexibility Index Analysis

Figure 5. RMSF plots for ZINC001361124195-iASPP (Cyan),
ZINC001361049159-iASPP (Blue), ZINC001545869876-
iASPP (Green), Control (Black) and Apo-state (Red).

In the present study, the residue mobility and stability for
the protein-ligand complexes were estimated by RMSF
analysis [30]. The RMSF graph was then plotted (Figure
5) against the number of residues corresponding to the
protein. The residues such as 640-648 and 801-823
revealed an unstable behavior. High fluctuations were
observed in the Apo-state and the control system as
compared to other systems. The residues Phe815, Gly816,
Leu817, Phe818, Pro819, Arg820, Val821, Lys822 and

Pro823 revealed high flexibility. The flexible regions
were mainly the loop regions. The active site residues
including PHE720, THR722, THR729, PHE731,
GLU732, GLU752, GLN753, ARG790, ASP791,
PRO793, ASP797, and TRP799 indicates less fluctuation.
The RMSF plot for all the systems is shown in Figure 5.

3.4.3 Structure Compactness Analysis

During the simulation, the Rg revealed the overall
compactness of the protein-ligand complexes. The
system stability is calculated by a moderately lower
change in Rg, which is also a sign of a stable folded
protein structure [31]. The ZINC001361049159-iASPP
complex is more tightly packed, as evidenced by the

6Figure . The mean Rg value of the
ZINC001361049159-iASPP complex was found to be
19.5-19.8Å while that of the ZINC001361124195-iASPP
complex was observed to be 19.4-21.0 Å. The Rg value
of the ZINC001545869876-iASPP complex was found to
be 20.5-23.5 Å. As compared protein-ligand complexes
the Rg value of the Apo state was very high. The mean
Rg of the Apo state was observed to be 20.1-24.4 Å.

Figure 6. Rg plots for ZINC001361124195-iASPP (Cyan),
ZINC001361049159-iASPP (Blue), ZINC001545869876-

th

iASPP (Green), Control (Black) and Apo-state (Red).

3.4.4 Dynamics Cross-Correlation Map (DCCM)

The positive and negative correlations of the amino acid
can be shown in the dynamical cross-correlation analysis.
DCCM exhibited an overall correlation that was between
-1.0 and +1.0. The degree of relationship between
residues was shown by different colors, with deeper
green signifying stronger associations. DCCM analysis
revealed that more positive correlations were observed in
e ZINC001361049159-iASPP and

ZINC001361124195-iASPP complexes while more
negative correlations were observed in the
ZINC001545869876-iASPP and Apo-state. Figure 7
displays the DCCM plot for all the complexes as well as
the control complex. The final snapshots after 100 ns
MD simulation are shown in Figure 8.
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Figure 7. DCCM plots for (A) ZINC001361049159-iASPP (B) ZINC001361124195-iASPP (C) ZINC001545869876-iASPP, (D)
Apo-state and (E) Control complex.

Figure 8. Snapshots of 100 ns MD simulation (A) ZINC001361124195-iASPP, (B) ZINC001361049159-iASPP, (C)
ZINC001545869876-iASPP and (D) Control
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3.5 MMGBSA Analysis

Table 4 shows the results of the MMGBSA analysis. The
MMGBSA analysis shows that the compound
ZINC001361049159 has a high affinity for the iASPP
receptor. The total binding energy (ΔG) value for the
ZINC001361049159-iASPP complex was found to be -

40Kcal/mol. The total energy for the
ZINC001361124195-iASPP and ZINC001545869876-
iASPP complexes were found as -35 and -20 Kcal/mol
(Table 3). The MMGBSA analysis was in agreement
with the molecular docking result. As compared to the
control compound all other compounds revealed good
binding free energy score.

Table 4.MMGBSA analysis for the complexes

Complexes VDW EEL ESURF EGB ΔG Total

ZINC001361049159 -51.98 -11.82 -6.09 29.10 -40.79
ZINC001361124195 -46.23 0.54 -5.41 15.63 -35.47
ZINC001545869876 -27.22 -19.28 -2.97 29.32 -20.15
Control -28.45 -33.29 -3.82 45.43 -20.12

4. Discussion

Cancer is a diverse and multifaceted illness where
several genetic and molecular alterations lead to
uncontrolled cell growth and proliferation, which quickly
increases tissue mass in the affected areas of the body
[32]. Over the years, an enormous number of natural
anti-cancer drugs have been discovered to limit tumor
growth in a variety of ways. Most of these drugs affect
vital biological enzymes, while some might alter cell
metabolism [33]. These drugs are selective for a variety
of cancer types and have different mechanisms of action
[34]. A rising number of cancer patients benefit from
current cancer treatments, such as immunotherapy,
targeted therapy, radiation therapy, chemotherapy, and
surgery. However, drug resistance, which continues to be
a major barrier to the curative treatment of a variety of
malignancies, limits the effectiveness of these
approaches [9]. Additional therapeutic approaches for
treating many cancer types rely on the use of small
molecules, such as plasmids, short RNAs, and genes.
However, these approaches have drawbacks because of
the poor stability of these molecules in vivo [35].

iASPP overexpression is associated with diverse human
tumors [36]. One of the possible ways to restore the p53
function may be possible by targeting iASPP [10].
Virtual screening (VS) has been described as a
significant alternative to traditional HTS campaigns [37].
Because actual positive hit rates with VS are typically
significantly greater than those with "random" testing
procedures [38]. Pharmacophore-based virtual screening
(VS) is extensively used in various stages of the drug
development process. Although reported hit rates from
virtual screening differ from study to study, they usually
fall between 5% and 40%. Conversely, the hit rates for
identifying active molecules are usually less than 1%
upon random testing of compounds [39]. Previously,
several studies used Pharmacophore modeling to identify
new inhibitors against different drug targets. For instance,
Huma et al. used Pharmacophore modeling and
identified compounds against STAT3 a cancer drug
target [40]. Here, we employed virtual screening based
on the Pharmacophore model for the prediction of new
hits against iASPP drug target. We retrieved 12000 drug-
like molecules from the ZINC database for the virtual
screening purpose. A pharmacophore model was
generated and validated by the GH scoring method. The

validated model predicts 36/12000 active compounds
against the iASPP cancer drug target. Most of the
compounds displayed strong interactions with iASPP. To
confirm the stability of the compounds the top 03 best
docking scores compounds were subjected to MD
simulation and the result was compared with the Apo
state. Post-simulation analysis including RMSD, RMSF,
RoG and DCCM analysis revealed that the compounds
ZINC001361049159, ZINC001361124195, and
ZINC001545869876 formed stable complexes with the
iASPP receptor. The MMGBSA analysis also confirmed
that the compounds ZINC001361049159,
ZINC001361124195, and ZINC001545869876 displayed
strong affinity towards the iASPP receptor.

5. Conclusion

In conclusion, an extensive method including
pharmacophore modeling, molecular docking, and MD
simulation has been effectively applied. Thirty-six hit
compounds were obtained as a result of the virtual
screening procedure. The hits revealed a strong binding
affinity for the iASPP target. Compounds
ZINC001361049159, ZINC001361124195, and
ZINC001545869876 were highly stable. Furthermore,
the findings indicate that the screening technique exhibits
significant promise in predicting strong inhibitors of the
iASPP target. In the future, this integrated procedure
may likely be applied to other members of the P53
family of proteins. Pharmacophore-based virtual
screening offers inexpensive screening of databases. One
of the major limitations of this study is the lack of
experimental validation of the identified compounds.
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