Cell Death Mechanisms in Human Cancers: Molecular Pathways, Therapy Resistance and Therapeutic Perspective
DOI:
https://doi.org/10.62382/jcbt.v1i1.13Abstract
A prominent cause of death among patients is cancer that can result from somatic mutations and exposure to environmental factors, among others. The treatment of cancer has been possible through the application of chemotherapy and radiotherapy that mainly mediate cell death and DNA damage. However, the tumor cells are able to induce the alternative molecular pathways to enhance their survival and mediate resistance to conventional therapeutics. The dysregulation of cell death pathways can significantly improve the therapy resistance in tumors and enhance their progression. Therefore, present review has been dedicated into understanding the abnormalities in cell death pathways. The induction of apoptosis through intrinsic and extrinsic pathways has been of importance in cancer therapy and the apoptosis inhibition through Bcl-2 and XIAP upregulation can mediate drug resistance. Moreover, autophagy has shown tumor-promoting and tumor-suppressing roles in cancer. Both inhibition and induction of autophagy can change tumorigenesis. Necroptosis is another cell death that has some similarities with apoptosis such as involvement of caspase-8 in its regulation. Ferroptosis is an iron-dependent cell death that reduces tumorigenesis and can be also regulated autophagy. The induction of immunogenic cell death and pyroptosis in the tumor cells can affect the immune system for cancer therapy. In addition to phytochemicals and small molecules introduced for the regulation of cell death mechanisms in cancer, the nanoparticles have been also applied to facilitate cell death in tumor treatment.
Downloads
References
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, et al. The long and short non-coding RNAs modulating EZH2 signaling in cancer. Journal of Hematology & Oncology. 2022, 15(1), 18.
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. Journal of Hematology & Oncology. 2022, 15(1), 83.
Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discovery. 2021, 11(4), 900-15.
Odle TG. Precision Medicine in Breast Cancer. Radiologic Technology. 2017, 88(4), 401m-21m.
Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. Journal of Hematology & Oncology. 2022, 15(1), 58.
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, et al. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. Journal of Hematology & Oncology. 2024, 17(1), 16.
Wang Z, Pang S, Liu X, Dong Z, Tian Y, et al. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. International Journal of Biological Macromolecules. 2024, 132579.
Strasser A, Vaux DL. Cell death in the origin and treatment of cancer. Molecular Cell. 2020, 78(6), 1045-54.
Sun Y, Peng Z. Programmed cell death and cancer. Postgraduate Medical Journal. 2009, 85(1001), 134-40.
Tong X, Tang R, Xiao M, Xu J, Wang W, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. Journal of Hematology & Oncology. 2022, 15(1), 174.
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation. 2018, 25(3), 486-541.
Peng F, Liao M, Qin R, Zhu S, Peng C, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduction and Targeted Therapy. 2022, 7(1), 286.
Koren E, Fuchs Y. Modes of Regulated Cell Death in Cancer. Cancer Discovery. 2021, 11(2), 245-65.
Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011, 147(4), 742-58.
Conradt B. Genetic control of programmed cell death during animal development. Annual Review of Genetics. 2009, 43, 493-523.
Galluzzi L, Bravo-San Pedro JM, Kepp O, Kroemer G. Regulated cell death and adaptive stress responses. Cellular and Molecular Life Sciences: CMLS. 2016, 73(11-12), 2405-10.
Cerella C, Teiten MH, Radogna F, Dicato M, Diederich M. From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnology Advances. 2014, 32(6), 1111-22.
Gong Y, Fan Z, Luo G, Yang C, Huang Q, et al. The role of necroptosis in cancer biology and therapy. Molecular Cancer. 2019, 18(1), 100.
Nie Q, Hu Y, Yu X, Li X, Fang X. Induction and application of ferroptosis in cancer therapy. Cancer Cell International. 2022,22(1), 12.
Du J, Wan Z, Wang C, Lu F, Wei M, et al. Designer exosomes for targeted and efficient ferroptosis induction in cancer via chemo-photodynamic therapy. Theranostics. 2021,11(17), 8185-96.
Wang YY, Liu XL, Zhao R. Induction of Pyroptosis and Its Implications in Cancer Management. Frontiers in Oncology. 2019, 9, 971.
Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, et al. Cuproptosis-Related Risk Score Predicts Prognosis and Characterizes the Tumor Microenvironment in Hepatocellular Carcinoma. Frontiers in Immunology. 2022, 13, 925618.
Shan J, Geng R, Zhang Y, Wei J, Liu J, et al. Identification of cuproptosis-related subtypes, establishment of a prognostic model and tumor immune landscape in endometrial carcinoma. Computers in Biology and Medicine. 2022, 149, 105988.
Wang X, Wu S, Liu F, Ke D, Wang X, et al. An Immunogenic Cell Death-Related Classification Predicts Prognosis and Response to Immunotherapy in Head and Neck Squamous Cell Carcinoma. Frontiers in Immunology. 2021, 12, 781466.
Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nature Reviews Gastroenterology & Hepatology. 2021, 18(11), 804-23.
Wang H, Liu M, Zeng X, Zheng Y, Wang Y, et al. Cell death affecting the progression of gastric cancer. Cell Death Discovery. 2022, 8(1), 377.
Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer. 1972, 26(4), 239-57.
Paweletz N. Walther Flemming: pioneer of mitosis research. Nature Reviews Molecular Cell Biology. 2001, 2(1), 72-5.
Kerr JF. History of the events leading to the formulation of the apoptosis concept. Toxicology. 2002, 181-182, 471-4.
Elmore S. Apoptosis: a review of programmed cell death. Toxicologic Pathology. 2007, 35(4), 495-516.
Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Research. 1999, 59(7 Suppl), 1701s-6s.
Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, et al. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. Journal of Cellular Physiology. 2000, 182(1), 41-9.
Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proceedings of the National Academy of Sciences of the United States of America. 2000, 97(26), 14376-81.
Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death? Autophagy. 2005, 1(2), 66-74.
Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annual Review of Pharmacology and Toxicology. 2001, 41, 367-401.
Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Molecular Cancer. 2015, 14, 48.
Verbrugge I, Johnstone RW, Smyth MJ. SnapShot: Extrinsic apoptosis pathways. Cell. 2010, 143(7), 1192, .e1-2.
Fulda S. Targeting apoptosis for anticancer therapy. Seminars in Cancer Biology. 2015, 31, 84-8.
Fresco P, Borges F, Marques MP, Diniz C. The anticancer properties of dietary polyphenols and its relation with apoptosis. Current Pharmaceutical Design. 2010, 16(1), 114-34.
Indap MA, Rao SG. Cell death by apoptosis and cancer chemotherapy. The National Medical Journal of India. 1995, 8(2), 65-7.
Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nature Reviews Clinical Oncology. 2020, 17(7), 395-417.
Wong RS. Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research: CR. 2011, 30(1), 87.
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, et al. Broad targeting of resistance to apoptosis in cancer. Seminars in Cancer Biology. 2015, 35 Suppl(0), S78-s103.
Erekat NS. Apoptosis and its Role in Parkinson’s Disease. In: Stoker TB, Greenland JC, editors. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Brisbane (AU): Codon Publications Copyright: The Authors. 2018.
Carson DA, Ribeiro JM. Apoptosis and disease. Lancet (London, England). 1993, 341(8855), 1251-4.
Shen J, Yang H, Qiao X, Chen Y, Zheng L, et al. The E3 ubiquitin ligase TRIM17 promotes gastric cancer survival and progression via controlling BAX stability and antagonizing apoptosis. Cell Death and Differentiation. 2023, 30(10), 2322-35.
Pellegrini FR, De Martino S, Fianco G, Ventura I, Valente D, et al. Blockage of autophagosome-lysosome fusion through SNAP29 O-GlcNAcylation promotes apoptosis via ROS production. Autophagy. 2023, 19(7), 2078-93.
Liu C, Zhou L, Chen J, Yang Z, Chen S, et al. Galectin-7 promotes cisplatin efficacy by facilitating apoptosis and G3BP1 degradation in cervical cancer. Biochemical Pharmacology. 2023, 217, 115834.
Qiu X, Wang J, Zhang N, Du T, Chen L, et al. Estradiol cypionate inhibits proliferation and promotes apoptosis of gastric cancer by regulating AKT ubiquitination. Biomedicine & Pharmacotherapy. 2023, 165, 115073.
Hsieh MJ, Lin CC, Lo YS, Ho HY, Chuang YC, et al. Hellebrigenin induces oral cancer cell apoptosis by modulating MAPK signalling and XIAP expression. Journal of Cellular and Molecular Medicine. 2024, 28(2), e18071.
Kitajima H, Maruyama R, Niinuma T, Yamamoto E, Takasawa A, et al. TM4SF1-AS1 inhibits apoptosis by promoting stress granule formation in cancer cells. Cell Death & Disease. 2023, 14(7), 424.
Cai Y, Yan H, Wang F, Xie L. Knocking down of lncRNA SBF2-AS1 inhibits proliferation, invasion and induces apoptosis of colorectal cancer through regulating PTEN. Cellular and Molecular Biology (Noisy-le-Grand, France). 2023, 69(14), 201-5.
Yao L, Yan D, Jiang B, Xue Q, Chen X, et al. Plumbagin is a novel GPX4 protein degrader that induces apoptosis in hepatocellular carcinoma cells. Free Radical Biology & Medicine. 2023, 203, 1-10.
Chen M, Hu L, Bao X, Ye K, Li Y, et al. Eltrombopag directly activates BAK and induces apoptosis. Cell Death & Disease. 2023, 14(7), 394.
Sudo M, Tsutsui H, Fujimoto J. Carbon Ion Irradiation Activates Anti-Cancer Immunity. International Journal of Molecular Sciences. 2024, 25(5).
Kim YJ, Song J, Lee DH, Um SH, Bhang SH. Suppressing cancer by damaging cancer cell DNA using LED irradiation. Journal of Photochemistry and Photobiology B, Biology. 2023, 243, 112714.
Wedekind H, Walz K, Buchbender M, Rieckmann T, Strasser E, et al. Head and neck tumor cells treated with hypofractionated irradiation die via apoptosis and are better taken up by M1-like macrophages. Strahlentherapie und Onkologie. 2022, 198(2), 171-82.
Qin J, Song G, Wang Y, Liu Q, Lin H, et al. Ultrasound irradiation inhibits proliferation of cervical cancer cells by initiating endoplasmic reticulum stress-mediated apoptosis and triggering phosphorylation of JNK. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University. 2021, 30(5), 545-54.
Kim YM, Ko SH, Shin YI, Kim Y, Kim T, et al. Light-emitting diode irradiation induces AKT/mTOR-mediated apoptosis in human pancreatic cancer cells and xenograft mouse model. Journal of Cellular Physiology. 2021, 236(2), 1362-74.
Yang T, Zhang Y, Wang T, Li M, Zhang Y, et al. Low-frequency ultrasound irradiation increases paclitaxel-induced sarcoma cells apoptosis and facilitates the transmembrane delivery of drugs. Frontiers in Pharmacology. 2022, 13, 1065289.
Sun L, Morikawa K, Sogo Y, Sugiura Y. MHY1485 enhances X-irradiation-induced apoptosis and senescence in tumor cells. Journal of Radiation Research. 2021, 62(5), 782-92.
Yu Z, Dong X, Song M, Xu A, He Q, et al. Targeting UBR5 inhibits postsurgical breast cancer lung metastases by inducing CDC73 and p53 mediated apoptosis. International Journal of Cancer. 2024, 154(4), 723-37.
Ma J, Pan Z, Du H, Chen X, Zhu X, et al. Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells. Oncology Letters. 2023, 26(2), 327.
Yun H, Jeong HR, Kim DY, You JE, Lee JU, et al. Degradation of AZGP1 suppresses apoptosis and facilitates cholangiocarcinoma tumorigenesis via TRIM25. Journal of Cellular and Molecular Medicine. 2024, 28(3), e18104.
Takano Y, Yogosawa S, Imaizumi Y, Kamioka H, Kanegae Y, et al. DYRK2 promotes chemosensitivity via p53-mediated apoptosis after DNA damage in colorectal cancer. Cancer Science. 2023, 114(12), 4558-70.
Zhang Q, Wu Q, Huan XJ, Song SS, Bao XB, et al. Co-inhibition of BET and NAE enhances BIM-dependent apoptosis with augmented cancer therapeutic efficacy. Biochemical Pharmacology. 2024, 223, 116198.
Li N, Li H, Zhou S, Zhang Q, Li G, et al. Overexpression of FNDC4 constrains ovarian cancer progression by promoting cell apoptosis and inhibiting cell growth. Journal of Cancer. 2023, 14(18), 3416-28.
Mi C, Zhang QL, Sun MJ, Lv Y, Sun QL, et al. Acevaltrate promotes apoptosis and inhibits proliferation by suppressing HIF-1α accumulation in cancer cells. International Immunopharmacology. 2024, 133, 112066.
Liu W, Ji Y, Wang F, Li C, Shi S, et al. Morusin shows potent antitumor activity for melanoma through apoptosis induction and proliferation inhibition. BMC Cancer. 2023, 23(1), 602.
Wahyuni FS, Syafri S, Permatasari D, Hefni D, Hamidi D, et al. Cowanin induces apoptosis in breast cancer cells via Bcl-2 signaling pathway. Journal of Complementary & Integrative Medicine. 2023, 20(3), 631-6.
Peter RM, Chou PJ, Shannar A, Patel K, Pan Y, et al. An Update on Potential Molecular Biomarkers of Dietary Phytochemicals Targeting Lung Cancer Interception and Prevention. Pharmaceutical Research. 2023, 40(11), 2699-714.
Li J, Zhang D, Wang S, Yu P, Sun J, et al. Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer. Journal of Advanced Research. 2024.
Tian W, Huang J, Zhang W, Wang Y, Jin R, Guo H, et al. Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacological Research. 2024, 199, 107034.
Guo Z, Tang Y, Wang S, Huang Y, Chi Q, et al. Natural product fargesin interferes with H3 histone lactylation via targeting PKM2 to inhibit non-small cell lung cancer tumorigenesis. BioFactors (Oxford, England). 2023.
Nayak D, Paul S, Das C, Bhal S, Kundu CN. Quinacrine and Curcumin in combination decreased the breast cancer angiogenesis by modulating ABCG2 via VEGF A. Journal of Cell Communication and Signaling. 2023, 17(3), 609-26.
Chen Z, Wei X, Zheng Y, Zhang Z, Gu W, et al. Targeted co-delivery of curcumin and erlotinib by MoS(2) nanosheets for the combination of synergetic chemotherapy and photothermal therapy of lung cancer. Journal of Nanobiotechnology. 2023, 21(1), 333.
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia. 2024, 91(1), 90-106.
Rutz J, Janicova A, Woidacki K, Chun FK, Blaheta RA, et al. Curcumin-A Viable Agent for Better Bladder Cancer Treatment. International Journal of Molecular Sciences. 2020, 21(11).
Kuo YC, Wang LJ, Rajesh R. Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Materials science & engineering C, Materials for Biological Applications. 2019, 102, 362-72.
Li S, Zhang L, Li S, Zhao H, Chen Y. Curcumin suppresses the progression of gastric cancer by regulating circ_0056618/miR-194-5p axis. Open Life Sciences. 2021, 16(1), 937-49.
Weng W, Goel A. Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Seminars in Cancer Biology. 2022, 80, 73-86.
Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E,et al. Curcumin and Colorectal Cancer: From Basic to Clinical Evidences. International Journal of Molecular Sciences. 2020, 21(7).
Su CW, Kao SH, Chen YT, Hsieh YH, Yang WE, et al. Curcumin Analog L48H37 Induces Apoptosis in Human Oral Cancer Cells by Activating Caspase Cascades and Downregulating the Inhibitor of Apoptosis Proteins through JNK/p38 Signaling. The American Journal of Chinese Medicine. 2024, 52(2), 565-81.
Liu Z, Cai J, Jiang G, Wang M, Wu C, et al. Novel Platinum(IV) complexes intervene oxaliplatin resistance in colon cancer via inducing ferroptosis and apoptosis. European Journal of Medicinal Chemistry. 2024, 263, 115968.
Gao Q, Li L, Zhang QM, Sheng QS, Zhang JL, et al. Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells. Chinese Journal of Integrative Medicine. 2024, 30(1), 25-33.
Feng Z, Feng Z, Han J, Cheng W, Su B, et al. Antinociceptive Effects of Shenling Baizhu through PI3K-Akt-mTOR Signaling Pathway in a Mouse Model of Bone Metastasis with Small-Cell Lung Cancer. Evidence-based Complementary and Alternative Medicine: eCAM. 2020, 2020, 4121483.
Deng M, Chen H, Long J, Song J, Xie L, et al. Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics. Archives of Pharmacal Research. 2021, 44(7), 633-54.
Zhang Y, Liu Y, Wang J, Jiang Z, Zhang L, et al. Atractylenolide II inhibits tumor-associated macrophages (TAMs)-induced lung cancer cell metastasis. Immunopharmacology and Immunotoxicology. 2022, 44(2), 227-37.
Dou S, Yang C, Zou D, Da W, Masood M, et al. Atractylenolide II induces cell cycle arrest and apoptosis in breast cancer cells through ER pathway. Pakistan Journal of Pharmaceutical Sciences. 2021, 34(4), 1449-58.
Zhang R, Wang Z, Yu Q, Shen J, He W, et al. Atractylenolide II reverses the influence of lncRNA XIST/miR-30a-5p/ROR1 axis on chemo-resistance of colorectal cancer cells. Journal of Cellular and Molecular medicine. 2019, 23(5), 3151-65.
Wang J, Nasser MI, Adlat S, Ming Jiang M, Jiang N, et al. Atractylenolide II Induces Apoptosis of Prostate Cancer Cells through Regulation of AR and JAK2/STAT3 Signaling Pathways. Molecules (Basel, Switzerland). 2018, 23(12).
Tian S, Yu H. Atractylenolide II Inhibits Proliferation, Motility and Induces Apoptosis in Human Gastric Carcinoma Cell Lines HGC-27 and AGS. Molecules (Basel, Switzerland). 2017, 22(11).
Fu XQ, Chou GX, Kwan HY, Tse AK, Zhao LH, et al. Inhibition of STAT3 signalling contributes to the antimelanoma action of atractylenolide II. Experimental Dermatology. 2014, 23(11), 855-7.
Tian S, Ren L, Liu C, Wang Z. Atractylenolide II Suppresses Glycolysis and Induces Apoptosis by Blocking the PADI3-ERK Signaling Pathway in Endometrial Cancer Cells. Molecules (Basel, Switzerland). 2024, 29(5).
Wang F, Dezfouli AB, Khosravi M, Sievert W, Stangl S, et al. Cannabidiol-induced crosstalk of apoptosis and macroautophagy in colorectal cancer cells involves p53 and Hsp70. Cell Death Discovery. 2023, 9(1), 286.
Cheng L, Zhai H, Du J, Zhang G, Shi G. Lobetyolin inhibits cell proliferation and induces cell apoptosis by downregulating ASCT2 in gastric cancer. Cytotechnology. 2023, 75(5), 435-48.
Zhong X, Ke X, Yang H, Ye X, Li C, et al. Moracin D suppresses cell growth and induces apoptosis via targeting the XIAP/PARP1 axis in pancreatic cancer. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology. 2024, 128, 155527.
Shariat Razavi SA, Taghdisi Khaboushan M, Jafari R, Shahini A, Ferns GA, et al. Harmaline induces apoptosis and inhibits migration in A2780 ovarian cancer cells in vitro. Physiological Reports. 2024, 12(6), e15984.
Liu X, Wang LL, Duan CY, Rong YR, Liang YQ, et al. Daurisoline inhibits proliferation, induces apoptosis, and enhances TRAIL sensitivity of breast cancer cells by upregulating DR5. Cell Biology International. 2024.
Wang Z, Chen K, Zhang K, He K, Zhang D, et al. Agrocybe cylindracea fucoglucogalactan induced lysosome-mediated apoptosis of colorectal cancer cell through H3K27ac-regulated cathepsin D. Carbohydrate Polymers. 2023, 319, 121208.
Han S, Chen S, Wang J, Huang S, Xiao Y, et al. Erianin promotes apoptosis and inhibits Akt-mediated aerobic glycolysis of cancer cells. Journal of Cancer. 2024, 15(8), 2380-90.
Zhang Y, Huang Q, Xu Q, Jia C, Xia Y. Pimavanserin tartrate induces apoptosis and cytoprotective autophagy and synergizes with chemotherapy on triple negative breast cancer. Biomedicine & Pharmacotherapy. 2023, 168, 115665.
Li Y, Li J, Lu Y, Ma Y. ZnO nanomaterials target mitochondrial apoptosis and mitochondrial autophagy pathways in cancer cells. Cell Biochemistry and Function. 2024, 42(1), e3909.
Liang W, Han C, Zhang D, Liu C, Zhu M, et al. Copper-coordinated nanoassemblies based on photosensitizer-chemo prodrugs and checkpoint inhibitors for enhanced apoptosis-cuproptosis and immunotherapy. Acta Biomaterialia. 2024, 175, 341-52.
Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and Mitophagy in Cardiovascular Disease. Circulation Research. 2017, 120(11), 1812-24.
Yamamoto H, Zhang S, Mizushima N. Autophagy genes in biology and disease. Nature Reviews Genetics. 2023, 24(6), 382-400.
Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nature Reviews Molecular Cell Biology. 2020, 21(8), 439-58.
Schuck S. Microautophagy-distinct molecular mechanisms handle cargoes of many sizes. Journal of Cell Science. 2020, 133(17).
Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo‐San Pedro JM, et al. Molecular definitions of autophagy and related processes. The EMBO Journal. 2017, 36(13), 1811-36.
Antonioli M, Di Rienzo M, Piacentini M, Fimia GM. Emerging mechanisms in initiating and terminating autophagy. Trends in Biochemical Sciences. 2017, 42(1), 28-41.
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2016, 12(1), 1-222.
Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nature Reviews Molecular Cell Biology. 2015, 16(8), 461-72.
Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic control of autophagy. Cell. 2014, 159(6), 1263-76.
Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nature Reviews Drug Discovery. 2017, 16(7), 487-511.
Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell. 2014, 157(1), 65-75.
Fuchs Y, Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nature Reviews Molecular Cell Biology. 2015, 16(6), 329-44.
Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, et al. Autophagy in healthy aging and disease. Nature Aging. 2021, 1(8), 634-50.
Tang C, Livingston MJ, Liu Z, Dong Z. Autophagy in kidney homeostasis and disease. Nature Reviews Nephrology. 2020, 16(9), 489-508.
Li G, Sherchan P, Tang Z, Tang J. Autophagy & Phagocytosis in Neurological Disorders and their Possible Cross-talk. Current Neuropharmacology. 2021, 19(11), 1912-24.
Lin L, Zhang MX, Zhang L, Zhang D, Li C, et al. Autophagy, Pyroptosis, and Ferroptosis: New Regulatory Mechanisms for Atherosclerosis. Frontiers in Cell and Developmental Biology. 2021, 9, 809955.
Tao T, Xu H. Autophagy and Obesity and Diabetes. Advances in Experimental Medicine and Biology. 2020, 1207, 445-61.
Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nature Reviews Molecular Cell Biology. 2023, 24(8), 560-75.
Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Molecular Cancer. 2020, 19(1), 12.
Nishimura T, Tooze SA. Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discovery. 2020, 6(1), 32.
Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nature Reviews Molecular Cell Biology. 2021, 22(11), 733-50.
Yang Y, Liu L, Tian Y, Gu M, Wang Y, et al. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Letters. 2024, 587, 216659.
Ashrafizadeh M, Zhang W, Zou R, Sethi G, Klionsky DJ, et al. A bioinformatics analysis, pre-clinical and clinical conception of autophagy in pancreatic cancer: Complexity and simplicity in crosstalk. Pharmacological Research. 2023, 194, 106822.
Qin Y, Ashrafizadeh M, Mongiardini V, Grimaldi B, Crea F, et al. Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Letters. 2023, 570, 216307.
Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions. Cell Death and Differentiation. 2020, 27(3), 858-71.
Zhou J, Jiang YY, Chen H, Wu YC, Zhang L. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Proliferation. 2020, 53(2), e12739.
Ashraf R, Kumar S. Mfn2-mediated mitochondrial fusion promotes autophagy and suppresses ovarian cancer progression by reducing ROS through AMPK/mTOR/ERK signaling. Cellular and Molecular Life Sciences: CMLS. 2022, 79(11), 573.
Zhang Z, Zhu H, Hu J. CircRAB11FIP1 promoted autophagy flux of ovarian cancer through DSC1 and miR-129. Cell Death & Disease. 2021, 12(2), 219.
Zhao Z, Xu H, Wei Y, Sun L, Song Y. Deubiquitylase PSMD14 inhibits autophagy to promote ovarian cancer progression via stabilization of LRPPRC. Biochimica et biophysica acta Molecular Basis of Disease. 2023, 1869(2), 166594.
Lian C, Huang Y, Hu P, Cao Y, Zhang Z, et al. Nitidine Chloride Triggers Autophagy and Apoptosis of Ovarian Cancer Cells through Akt/mTOR Signaling Pathway. Current Pharmaceutical Design. 2023, 29(19), 1524-34.
Zhang F, Zhang H, Qian W, Xi Y, Chang L, et al. Matrine exerts antitumor activity in cervical cancer by protective autophagy via the Akt/mTOR pathway in vitro and in vivo. Oncology Letters. 2022, 23(4), 110.
Fan LX, Tao L, Lai YC, Cai SY, Zhao ZY, et al. Cx32 promotes autophagy and produces resistance to SN‑induced apoptosis via activation of AMPK signalling in cervical cancer. International Journal of Oncology. 2022, 60(1).
Shaitelman SF, Cromwell KD, Rasmussen JC, Stout NL, Armer JM, et al. Recent progress in the treatment and prevention of cancer-related lymphedema. CA: a Cancer Journal for Clinicians. 2015, 65(1), 55-81.
Maresso KC, Tsai KY, Brown PH, Szabo E, Lippman S, et al. Molecular cancer prevention: Current status and future directions. CA: a Cancer Journal for Clinicians. 2015, 65(5), 345-83.
Porcza LM, Simms C, Chopra M. Honey and Cancer: Current Status and Future Directions. Diseases (Basel, Switzerland). 2016, 4(4).
Zhang L, Liu X, Song L, Zhai H, Chang C. MAP7 promotes migration and invasion and progression of human cervical cancer through modulating the autophagy. Cancer Cell International. 2020, 20, 17.
Nuranna L, Fahrudin A. Survival Rate of Cervical Cancer in National Referral Hospital in 2012 - 2014. Acta Medica Indonesiana. 2019, 51(2), 145-50.
Wang R, Pan W, Jin L, Huang W, Li Y, et al. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Letters. 2020, 471, 88-102.
Shen W, Zhu M, Wang Q, Zhou X, Wang J, et al. DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA m(6)A modification and translation for cytoprotective autophagy in cervical cancer. RNA Biology. 2022, 19(1), 751-63.
Shi Y, Liu M, Huang Y, Zhang J, Yin L. Promotion of cell autophagy and apoptosis in cervical cancer by inhibition of long noncoding RNA LINC00511 via transcription factor RXRA-regulated PLD1. Journal of Cellular Physiology. 2020, 235(10), 6592-604.
Panda AC, Grammatikakis I, Munk R, Gorospe M, Abdelmohsen K. Emerging roles and context of circular RNAs. Wiley Interdisciplinary Reviews RNA. 2017, 8(2).
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, NY). 2013, 19(2), 141-57.
Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL. CircRNA: a novel type of biomarker for cancer. Breast Cancer (Tokyo, Japan). 2018, 25(1), 1-7.
Fu B, Zhang A, Li M, Pan L, Tang W, et al. Circular RNA profile of breast cancer brain metastasis: identification of potential biomarkers and therapeutic targets. Epigenomics. 2018, 10(12), 1619-30.
Liang G, Ling Y, Mehrpour M, Saw PE, Liu Z, et al. Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression. Molecular Cancer. 2020, 19(1), 65.
Song P, Li Y, Dong Y, Liang Y, Qu H, et al. Estrogen receptor β inhibits breast cancer cells migration and invasion through CLDN6-mediated autophagy. Journal of Experimental & Clinical Cancer Research: CR. 2019, 38(1), 354.
Dong Y, Jin Q, Sun M, Qi D, Qu H, et al. CLDN6 inhibits breast cancer metastasis through WIP-dependent actin cytoskeleton-mediated autophagy. Journal of Experimental & Clinical Cancer Research: CR. 2023, 42(1), 68.
Rong L, Li Z, Leng X, Li H, Ma Y, et al. Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway. Biomedicine & Pharmacotherapy. 2020, 122, 109726.
Cocco S, Leone A, Roca MS, Lombardi R, Piezzo M, et al. Inhibition of autophagy by chloroquine prevents resistance to PI3K/AKT inhibitors and potentiates their antitumor effect in combination with paclitaxel in triple negative breast cancer models. Journal of Translational Medicine. 2022, 20(1), 290.
Wang Z, Yang L, Wu P, Li X, Tang Y, et al. The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of afadin. Molecular Cancer. 2022, 21(1), 29.
Qi J, Xing Y, Liu Y, Wang MM, Wei X, et al. MCOLN1/TRPML1 finely controls oncogenic autophagy in cancer by mediating zinc influx. Autophagy. 2021, 17(12), 4401-22.
Song X, Liu L, Chang M, Geng X, Wang X, et al. NEO212 induces mitochondrial apoptosis and impairs autophagy flux in ovarian cancer. Journal of Experimental & Clinical Cancer Research: CR. 2019, 38(1), 239.
Han L, Huang Z, Liu Y, Ye L, Li D, et al. MicroRNA-106a regulates autophagy-related cell death and EMT by targeting TP53INP1 in lung cancer with bone metastasis. Cell Death & disease. 2021, 12(11), 1037.
Zhao L, Wu X, Zhang Z, Fang L, Yang B, et al. ELF1 suppresses autophagy to reduce cisplatin resistance via the miR-152-3p/NCAM1/ERK axis in lung cancer cells. Cancer Science. 2023, 114(6), 2650-63.
Schläfli AM, Tokarchuk I, Parejo S, Jutzi S, Berezowska S, et al. ALK inhibition activates LC3B-independent, protective autophagy in EML4-ALK positive lung cancer cells. Scientific Reports. 2021, 11(1), 9011.
Chen S, Gao Y, Zhu P, Wang X, Zeng L, et al. Anti-cancer Drug Anlotinib Promotes Autophagy and Apoptosis in Breast Cancer. Frontiers in Bioscience (Landmark Edition). 2022, 27(4), 125.
Gao Y, Wang X, Yang Q, Wang X, Zhang X, et al. Qiyusanlong Formula Induces Autophagy in Non-Small-Cell Lung Cancer Cells and Xenografts through the mTOR Signaling Pathway. Evidence-based Complementary and Alternative Medicine: eCAM. 2021, 2021, 5575453.
O'Neill EJ, Sze NSK, MacPherson REK, Tsiani E. Carnosic Acid against Lung Cancer: Induction of Autophagy and Activation of Sestrin-2/LKB1/AMPK Signalling. International Journal of Molecular Sciences. 2024, 25(4).
Wang S, Wang Z, Wu Y, Hou C, Dai X, et al. The TCM Prescription Yi-Fei-Jie-Du-Tang Inhibit Invasive Migration and EMT of Lung Cancer Cells by Activating Autophagy. Evidence-based Complementary and Alternative Medicine: eCAM. 2022, 2022, 9160616.
Wu Q, Li D, Sun T, Liu J, Ou H, et al. Bai-He-Gu-Jin-Tang formula suppresses lung cancer via AKT/GSK3β/β-catenin and induces autophagy via the AMPK/mTORC1/ULK1 signaling pathway. Journal of Cancer. 2021, 12(21), 6576-87.
Yang X, Zhao M, Wu Z, Chen C, Zhang Y, et al. Nano-ultrasonic Contrast Agent for Chemoimmunotherapy of Breast Cancer by Immune Metabolism Reprogramming and Tumor Autophagy. ACS nano. 2022, 16(2), 3417-31.
Hwang JR, Kim WY, Cho YJ, Ryu JY, Choi JJ, et al. Chloroquine reverses chemoresistance via upregulation of p21(WAF1/CIP1) and autophagy inhibition in ovarian cancer. Cell Death & Disease. 2020, 11(12), 1034.
Pagotto A, Pilotto G, Mazzoldi EL, Nicoletto MO, Frezzini S, et al. Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells. Cell Death & Disease. 2017, 8(7), e2943.
Hu JL, Hu XL, Guo AY, Wang CJ, Wen YY, et al. Endoplasmic reticulum stress promotes autophagy and apoptosis and reverses chemoresistance in human ovarian cancer cells. Oncotarget. 2017, 8(30), 49380-94.
Chen X, Zhang W, Liu R, Zhu Z, Gong M, et al. NNK from tobacco smoking enhances pancreatic cancer cell stemness and chemoresistance by creating a β2AR-Akt feedback loop that activates autophagy. Molecular Oncology. 2022, 16(15), 2881-95.
Cesareni G, Panni S, Nardelli G, Castagnoli L. Can we infer peptide recognition specificity mediated by SH3 domains? FEBS Letters. 2002, 513(1), 38-44.
Tong F, Zhang M, Guo X, Shi H, Li L, et al. Expression patterns of SH3BGR family members in zebrafish development. Development Genes and Evolution. 2016, 226(4), 287-95.
Werner CJ, Heyny-von Haussen R, Mall G, Wolf S. Proteome analysis of human substantia nigra in Parkinson's disease. Proteome Science. 2008, 6, 8.
van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002, 415(6871), 530-6.
Abba MC, Hu Y, Sun H, Drake JA, Gaddis S, et al. Gene expression signature of estrogen receptor alpha status in breast cancer. BMC Genomics. 2005, 6, 37.
Muñiz Lino MA, Palacios-Rodríguez Y, Rodríguez-Cuevas S, Bautista-Piña V, Marchat LA, et al. Comparative proteomic profiling of triple-negative breast cancer reveals that up-regulation of RhoGDI-2 is associated to the inhibition of caspase 3 and caspase 9. Journal of Proteomics. 2014, 111, 198-211.
Zhang S, Liu X, Abdulmomen Ali Mohammed S, Li H, Cai W, et al. Adaptor SH3BGRL drives autophagy-mediated chemoresistance through promoting PIK3C3 translation and ATG12 stability in breast cancers. Autophagy. 2022, 18(8), 1822-40.
Guo J, Chen M, Ai G, Mao W, Li H, et al. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomedicine & Pharmacotherapy. 2019, 115, 108957.
Wang L, Shang Z, Zhou Y, Hu X, Chen Y, et al. Autophagy mediates glucose starvation-induced glioblastoma cell quiescence and chemoresistance through coordinating cell metabolism, cell cycle, and survival. Cell Death & Disease. 2018, 9(2), 213.
Luo M, Su Z, Gao H, Tan J, Liao R, et al. Cirsiliol induces autophagy and mitochondrial apoptosis through the AKT/FOXO1 axis and influences methotrexate resistance in osteosarcoma. Journal of Translational Medicine. 2023, 21(1), 907.
Ghasemi P, Shafiee G, Ziamajidi N, Abbasalipourkabir R. Copper Nanoparticles Induce Apoptosis and Oxidative Stress in SW480 Human Colon Cancer Cell Line. Biological Trace Element Research. 2023, 201(8), 3746-54.
Abdelhakm LO, Kandil EI, Mansour SZ, El-Sonbaty SM. Chrysin Encapsulated Copper Nanoparticles with Low Dose of Gamma Radiation Elicit Tumor Cell Death Through p38 MAPK/NF-κB Pathways. Biological Trace Element Research. 2023, 201(11), 5278-97.
Gao S, Wang K, Wang X. miR-375 targeting autophagy-related 2B (ATG2B) suppresses autophagy and tumorigenesis in cisplatin-resistant osteosarcoma cells. Neoplasma. 2020, 67(4), 724-34.
Zhou F, Yang X, Zhao H, Liu Y, Feng Y, et al. Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer. Theranostics. 2018, 8(19), 5200-12.
Zarei M, Shrestha R, Johnson S, Yu Z, Karki K, et al. Nuclear Receptor 4A2 (NR4A2/NURR1) Regulates Autophagy and Chemoresistance in Pancreatic Ductal Adenocarcinoma. Cancer Research Communications. 2021, 1(2), 65-78.
Zhou M, Zhang G, Hu J, Zhu Y, Lan H, et al. Rutin attenuates Sorafenib-induced Chemoresistance and Autophagy in Hepatocellular Carcinoma by regulating BANCR/miRNA-590-5P/OLR1 Axis. International Journal of Biological Sciences. 2021, 17(13), 3595-607.
Li H, Chen L, Li JJ, Zhou Q, Huang A, et al. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. Journal of Hematology & Oncology. 2018, 11(1), 70.
Wang J, Da C, Su Y, Song R, Bai Z. MKNK2 enhances chemoresistance of ovarian cancer by suppressing autophagy via miR-125b. Biochemical and Biophysical Research Communications. 2021, 556, 31-8.
Jiang T, Zhu J, Jiang S, Chen Z, Xu P, et al. Targeting lncRNA DDIT4-AS1 Sensitizes Triple Negative Breast Cancer to Chemotherapy via Suppressing of Autophagy. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 2023, 10(17), e2207257.
Niu X, Chen L, Li Y, Hu Z, He F. Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC. Seminars in Cancer Biology. 2022, 86, 273-85.
Khan I, Yousif A, Chesnokov M, Hong L, Chefetz I. A decade of cell death studies: Breathing new life into necroptosis. Pharmacology & Therapeutics. 2021, 220, 107717.
Tan Y, Sementino E, Cheung M, Peri S, Menges CW, et al. Somatic epigenetic silencing of RIPK3 inactivates necroptosis and contributes to chemoresistance in malignant mesothelioma. Clinical Cancer Research. 2021, 27(4), 1200-13.
Seo J, Nam YW, Kim S, Oh D-B, Song J. Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators. Experimental & Molecular Medicine. 2021, 53(6), 1007-17.
Zhang T, Wang Y, Inuzuka H, Wei W. Necroptosis pathways in tumorigenesis. Seminars in Cancer Biology. 2022, 86(Pt 3), 32-40.
Fulda S. The mechanism of necroptosis in normal and cancer cells. Cancer Biology & Therapy. 2013, 14(11), 999-1004.
Zhang X, Ren Z, Xu W, Jiang Z. Necroptosis in atherosclerosis. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2022, 534, 22-8.
Coornaert I, Hofmans S, Devisscher L, Augustyns K, Van Der Veken P, et al. Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis. Expert Opinion on Drug Discovery. 2018, 13(6), 477-88.
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015, 517(7534), 311-20.
Erekat NS. Programmed Cell Death in Diabetic Nephropathy: A Review of Apoptosis, Autophagy, and Necroptosis. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2022, 28, e937766.
Fan J, Liu L, Lu Y, Chen Q, Fan S, et al. Acute exposure to polystyrene nanoparticles promotes liver injury by inducing mitochondrial ROS-dependent necroptosis and augmenting macrophage-hepatocyte crosstalk. Particle and Fibre Toxicology. 2024, 21(1), 20.
Zang X, Song J, Li Y, Han Y. Targeting necroptosis as an alternative strategy in tumor treatment: From drugs to nanoparticles. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2022, 349, 213-26.
Yan J, Wan P, Choksi S, Liu ZG. Necroptosis and tumor progression. Trends in Cancer. 2022, 8(1), 21-7.
He S, Wang L, Miao L, Wang T, Du F, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009, 137(6), 1100-11.
Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science (New York, NY). 2009, 325(5938), 332-6.
Sun L, Wang H, Wang Z, He S, Chen S, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012, 148(1-2), 213-27.
Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proceedings of the National Academy of Sciences of the United States of America. 2012, 109(14), 5322-7.
Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biology. 2014, 16(1), 55-65.
Chen X, Li W, Ren J, Huang D, He WT, Song Y, et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Research. 2014, 24(1), 105-21.
Upton JW, Kaiser WJ, Mocarski ES. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host & Microbe. 2012, 11(3), 290-7.
Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. The Journal of Biological Chemistry. 2013, 288(43), 31268-79.
Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH, et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Research. 2015, 25(6), 707-25.
Geserick P, Wang J, Schilling R, Horn S, Harris PA, et al. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death & Disease. 2015, 6(9), e1884.
Stoll G, Ma Y, Yang H, Kepp O, Zitvogel L, et al. Pro-necrotic molecules impact local immunosurveillance in human breast cancer. Oncoimmunology. 2017, 6(4), e1299302.
Feng X, Song Q, Yu A, Tang H, Peng Z, et al. Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma. 2015, 62(4), 592-601.
Moriwaki K, Bertin J, Gough PJ, Orlowski GM, Chan FK. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death & Disease. 2015, 6(2), e1636.
Höckendorf U, Yabal M, Herold T, Munkhbaatar E, Rott S, et al. RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells. Cancer Cell. 2016, 30(1), 75-91.
Nugues AL, El Bouazzati H, Hétuin D, Berthon C, Loyens A, et al. RIP3 is downregulated in human myeloid leukemia cells and modulates apoptosis and caspase-mediated p65/RelA cleavage. Cell Death & Disease. 2014, 5(8), e1384.
Bozec D, Iuga AC, Roda G, Dahan S, Yeretssian G. Critical function of the necroptosis adaptor RIPK3 in protecting from intestinal tumorigenesis. Oncotarget. 2016, 7(29), 46384-400.
Huang CY, Kuo WT, Huang YC, Lee TC, Yu LC. Resistance to hypoxia-induced necroptosis is conferred by glycolytic pyruvate scavenging of mitochondrial superoxide in colorectal cancer cells. Cell Death & Disease. 2013, 4(5), e622.
Tang R, Xu J, Zhang B, Liu J, Liang C, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. Journal of Hematology & Oncology. 2020, 13(1), 110.
Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science (New York, NY). 2015, 348(6230), 69-74.
Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. The Journal of Clinical Investigation. 2015, 125(9), 3335-7.
Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology. 2010, 11(10), 889-96.
Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8⁺ T cells. Science (New York, NY). 2015, 350(6258), 328-34.
Aaes TL, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Reports. 2016, 15(2), 274-87.
Snyder AG, Hubbard NW, Messmer MN, Kofman SB, Hagan CE, et al. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Science Immunology. 2019, 4(36).
Philipp S, Sosna J, Adam D. Cancer and necroptosis: friend or foe? Cellular and Molecular Life Sciences: CMLS. 2016, 73(11-12), 2183-93.
Dunai ZA, Imre G, Barna G, Korcsmaros T, Petak I, et al. Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PloS One. 2012, 7(7), e41945.
McCabe KE, Bacos K, Lu D, Delaney JR, Axelrod J, et al. Triggering necroptosis in cisplatin and IAP antagonist-resistant ovarian carcinoma. Cell Death & Disease. 2014, 5(10), e1496.
Voigt S, Philipp S, Davarnia P, Winoto-Morbach S, Röder C, et al. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells. BMC Cancer. 2014, 14, 74.
Sprooten J, De Wijngaert P, Vanmeerbeerk I, Martin S, Vangheluwe P, et al. Necroptosis in Immuno-Oncology and Cancer Immunotherapy. Cells. 2020, 9(8).
Hänggi K, Vasilikos L, Valls AF, Yerbes R, Knop J, et al. RIPK1/RIPK3 promotes vascular permeability to allow tumor cell extravasation independent of its necroptotic function. Cell Death & Disease. 2017, 8(2), e2588.
Ruan J, Mei L, Zhu Q, Shi G, Wang H. Mixed lineage kinase domain-like protein is a prognostic biomarker for cervical squamous cell cancer. International Journal of Clinical and Experimental Pathology. 2015, 8(11), 15035-8.
Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han K, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature. 2016, 536(7615), 215-8.
Ando Y, Ohuchida K, Otsubo Y, Kibe S, Takesue S, et al. Necroptosis in pancreatic cancer promotes cancer cell migration and invasion by release of CXCL5. PloS One. 2020, 15(1), e0228015.
Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nature reviews Cancer. 2022, 22(7), 381-96.
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012, 149(5), 1060-72.
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017, 171(2), 273-85.
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nature Reviews Molecular Cell Biology. 2021, 22(4), 266-82.
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014, 156(1-2), 317-31.
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019, 575(7784), 688-92.
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019, 575(7784), 693-8.
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Central Science. 2020, 6(1), 41-53.
Soula M, Weber RA, Zilka O, Alwaseem H, La K, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nature Chemical Biology. 2020, 16(12), 1351-60.
Mao C, Liu X, Zhang Y, Lei G, Yan Y, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021, 593(7860), 586-90.
Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018, 172(3), 409-22.e21.
Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Molecular Cell. 2022, 82(12), 2215-27.
Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003, 3(3), 285-96.
Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007, 447(7146), 864-8.
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife. 2014, 3, e02523.
Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochimica et Biophysica Acta. 1982, 710(2), 197-211.
Ursini F, Maiorino M, Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochimica et Biophysica acta. 1985, 839(1), 62-70.
Schwarz K, Foltz CM. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society. 1957, 79(12), 3292-3.
Bieri JG. An effect of selenium and cystine on lipide peroxidation in tissues deficient in vitamin E. Nature. 1959, 184(Suppl 15), 1148-9.
Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Molecular Cancer. 2022, 21(1), 47.
Xu T, Ding W, Ji X, Ao X, Liu Y, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy. Journal of Cellular and Molecular Medicine. 2019, 23(8), 4900-12.
Wang H, Cheng Y, Mao C, Liu S, Xiao D, et al. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Molecular Therapy: the Journal of the American Society of Gene Therapy. 2021, 29(7), 2185-208.
Dos Santos AF, Fazeli G, Xavier da Silva TN, Friedmann Angeli JP. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends in Cell Biology. 2023, 33(12), 1062-76.
Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nature Reviews Cancer. 2019, 19(7), 405-14.
Huang Y, Wang S, Ke A, Guo K. Ferroptosis and its interaction with tumor immune microenvironment in liver cancer. Biochimica et Biophysica Acta Reviews on Cancer. 2023, 1878(1), 188848.
Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, et al. Ferroptosis and Cancer: Mitochondria Meet the "Iron Maiden" Cell Death. Cells. 2020, 9(6).
Gan Y, Deng J, Hao Q, Huang Y, Han T, et al. UTP11 deficiency suppresses cancer development via nucleolar stress and ferroptosis. Redox Biology. 2023, 62, 102705.
Zhou Q, Liu T, Qian W, Ji J, Cai Q, et al. HNF4A-BAP31-VDAC1 axis synchronously regulates cell proliferation and ferroptosis in gastric cancer. Cell Death & Disease. 2023, 14(6), 356.
Zhu X, Fu Z, Dutchak K, Arabzadeh A, Milette S, et al. Cotargeting CDK4/6 and BRD4 Promotes Senescence and Ferroptosis Sensitivity in Cancer. Cancer Research. 2024, 84(8), 1333-51.
Li H, Yu K, Hu H, Zhang X, Zeng S, et al. METTL17 coordinates ferroptosis and tumorigenesis by regulating mitochondrial translation in colorectal cancer. Redox Biology. 2024, 71, 103087.
Zhong S, Chen W, Wang B, Gao C, Liu X, et al. Energy stress modulation of AMPK/FoxO3 signaling inhibits mitochondria-associated ferroptosis. Redox Biology. 2023, 63, 102760.
Miao Q, Deng WQ, Lyu WY, Sun ZT, Fan SR, et al. Erianin inhibits the growth and metastasis through autophagy-dependent ferroptosis in KRAS(G13D) colorectal cancer. Free Radical Biology & Medicine. 2023, 204, 301-12.
Lei S, Chen C, Han F, Deng J, Huang D, et al. AMER1 deficiency promotes the distant metastasis of colorectal cancer by inhibiting SLC7A11- and FTL-mediated ferroptosis. Cell Reports. 2023, 42(9), 113110.
Xue Y, Lu F, Chang Z, Li J, Gao Y, et al. Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade. Nature Communications. 2023, 14(1), 4758.
Ouyang S, Li H, Lou L, Huang Q, Zhang Z, et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biology. 2022, 52, 102317.
Zheng Y, Wang Y, Lu Z, Wan J, Jiang L, et al. PGAM1 Inhibition Promotes HCC Ferroptosis and Synergizes with Anti-PD-1 Immunotherapy. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 2023, 10(29), e2301928.
Conche C, Finkelmeier F, Pešić M, Nicolas AM, Böttger TW, et al. Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut. 2023, 72(9), 1774-82.
Huang L, Zhong L, Cheng R, Chang L, Qin M, et al. Ferroptosis and WDFY4 as novel targets for immunotherapy of lung adenocarcinoma. Aging. 2023, 15(18), 9676-94.
Wang S, Guo Q, Xu R, Lin P, Deng G, et al. Combination of ferroptosis and pyroptosis dual induction by triptolide nano-MOFs for immunotherapy of Melanoma. Journal of Nanobiotechnology. 2023, 21(1), 383.
Jiang F, Jia K, Chen Y, Ji C, Chong X, et al. ANO1-Mediated Inhibition of Cancer Ferroptosis Confers Immunotherapeutic Resistance through Recruiting Cancer-Associated Fibroblasts. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 2023, 10(24), e2300881.
Zhang W, Dai J, Hou G, Liu H, Zheng S, et al. SMURF2 predisposes cancer cell toward ferroptosis in GPX4-independent manners by promoting GSTP1 degradation. Molecular Cell. 2023, 83(23), 4352-69.e8.
Wang Z, Li W, Wang X, Zhu Q, Liu L, et al. Isoliquiritigenin induces HMOX1 and GPX4-mediated ferroptosis in gallbladder cancer cells. Chinese Medical Journal. 2023, 136(18), 2210-20.
Cui W, Guo M, Liu D, Xiao P, Yang C, et al. Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition. Nature Cell Biology. 2024, 26(1), 124-37.
Luo Y, Zhang Y, Pang S, Min J, Wang T, et al. PCBP1 protects bladder cancer cells from mitochondria injury and ferroptosis by inducing LACTB mRNA degradation. Molecular Carcinogenesis. 2023, 62(7), 907-19.
Xiong H, Zhai Y, Meng Y, Wu Z, Qiu A, et al. Acidosis activates breast cancer ferroptosis through ZFAND5/SLC3A2 signaling axis and elicits M1 macrophage polarization. Cancer Letters. 2024, 587, 216732.
Li Y, Liu J, Chen Y, Weichselbaum RR, Lin W. Nanoparticles Synergize Ferroptosis and Cuproptosis to Potentiate Cancer Immunotherapy. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 2024, e2310309.
Dai X, Zhang J, Bao X, Guo Y, Jin Y, et al. Induction of Tumor Ferroptosis-Dependent Immunity via an Injectable Attractive Pickering Emulsion Gel. Advanced Materials (Deerfield Beach, Fla). 2023, 35(35), e2303542.
Yang C, Chen Z, Wei M, Hu S, Cai M, et al. A self-amplified ferroptosis nanoagent that inhibits the tumor upstream glutathione synthesis to reverse cancer chemoresistance. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2023, 357, 20-30.
Liu Y, Jiang N, Chen W, Zhang W, Shen X, et al. TRIM59-mediated ferroptosis enhances neuroblastoma development and chemosensitivity through p53 ubiquitination and degradation. Heliyon. 2024, 10(4), e26014.
Wang X, Zhao L, Wang C, Wang L, Wu H, et al. Potent nanoreactor-mediated ferroptosis-based strategy for the reversal of cancer chemoresistance to Sorafenib. Acta Biomaterialia. 2023, 159, 237-46.
Xu Y, Hao J, Chen Q, Qin Y, Qin H, et al. Inhibition of the RBMS1/PRNP axis improves ferroptosis resistance-mediated oxaliplatin chemoresistance in colorectal cancer. Molecular Carcinogenesis. 2024, 63(2), 224-37.
Shang Z, Luo Z, Wang Y, Liu Q, Xin Y, et al. CircHIPK3 contributes to cisplatin resistance in gastric cancer by blocking autophagy-dependent ferroptosis. Journal of Cellular Physiology. 2023, 238(10), 2407-24.
Zhang H, Deng T, Liu R, Ning T, Yang H, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Molecular Cancer. 2020, 19(1), 43.
Fu D, Wang C, Yu L, Yu R. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling. Cellular & Molecular Biology Letters. 2021, 26(1), 26.
Han Y, Gao X, Wu N, Jin Y, Zhou H, et al. Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2. Cell Death & Disease. 2022, 13(8), 742.
Yao L, Li J, Zhang X, Zhou L, Hu K. Downregulated ferroptosis-related gene SQLE facilitates temozolomide chemoresistance, and invasion and affects immune regulation in glioblastoma. CNS Neuroscience & Therapeutics. 2022, 28(12), 2104-15.
Yang JY, Lei XY, He KY, Guo JR, Liu MJ, et al. HMGA1 drives chemoresistance in esophageal squamous cell carcinoma by suppressing ferroptosis. Cell Death & Disease. 2024, 15(2), 158.
Xu Z, Wang X, Sun W, Xu F, Kou H, et al. RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biology. 2023, 68, 102952.
Zheng H, Liu J, Cheng Q, Zhang Q, Zhang Y, et al. Targeted activation of ferroptosis in colorectal cancer via LGR4 targeting overcomes acquired drug resistance. Nature Cancer. 2024, 5(4), 572-89.
Zeng K, Li W, Wang Y, Zhang Z, Zhang L, et al. Inhibition of CDK1 Overcomes Oxaliplatin Resistance by Regulating ACSL4-mediated Ferroptosis in Colorectal Cancer. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 2023, 10(25), e2301088.
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, et al. Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer. 2012, 12(12), 860-75.
Matzinger P. Tolerance, danger, and the extended family. Annual Review of Immunology. 1994, 12, 991-1045.
Rock KL, Hearn A, Chen CJ, Shi Y. Natural endogenous adjuvants. Springer Seminars in Immunopathology. 2005, 26(3), 231-46.
Garg AD, Krysko DV, Vandenabeele P, Agostinis P. DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochemical & photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology. 2011, 10(5), 670-80.
Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, et al. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochimica et Biophysica acta. 2010, 1805(1), 53-71.
Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity. 2008, 29(1), 21-32.
Lüthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009, 31(1), 84-98.
Ruan H, Leibowitz BJ, Zhang L, Yu J. Immunogenic cell death in colon cancer prevention and therapy. Molecular Carcinogenesis. 2020, 59(7), 783-93.
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine. 2007, 13(9), 1050-9.
Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010, 29(4), 482-91.
Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine. 2007, 13(1), 54-61.
Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nature Reviews Immunology. 2017, 17(2), 97-111.
Zhou J, Wang G, Chen Y, Wang H, Hua Y, et al. Immunogenic cell death in cancer therapy: Present and emerging inducers. Journal of Cellular and Molecular Medicine. 2019, 23(8), 4854-65.
Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nature Reviews Clinical Oncology. 2011, 8(3), 151-60.
Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. Journal of Leukocyte Biology. 2007, 81(1), 1-5.
Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Science Translational Medicine. 2012, 4(143), 143ra99.
Obeid M, Panaretakis T, Tesniere A, Joza N, Tufi R, et al. Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from "silent" to immunogenic. Cancer Research. 2007, 67(17), 7941-4.
Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science (New York, NY). 2011, 334(6062), 1573-7.
Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nature medicine. 2009, 15(10), 1170-8.
Li X, Zheng J, Chen S, Meng FD, Ning J, et al. Oleandrin, a cardiac glycoside, induces immunogenic cell death via the PERK/elF2α/ATF4/CHOP pathway in breast cancer. Cell Death & Disease. 2021, 12(4), 314.
Liu L, Li S, Qu Y, Bai H, Pan X, et al. Ablation of ERO1A induces lethal endoplasmic reticulum stress responses and immunogenic cell death to activate anti-tumor immunity. Cell Reports Medicine. 2023, 4(10), 101206.
Li Z, Chu Z, Yang J, Qian H, Xu J, et al. Immunogenic Cell Death Augmented by Manganese Zinc Sulfide Nanoparticles for Metastatic Melanoma Immunotherapy. ACS Nano. 2022, 16(9), 15471-83.
Huang Z, Wang Y, Yao D, Wu J, Hu Y, et al. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nature Communications. 2021, 12(1), 145.
Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nature Reviews Immunology. 2020, 20(3), 143-57.
Ding J, Wang K, Liu W, She Y, Sun Q, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016, 535(7610), 111-6.
Feng S, Fox D, Man SM. Mechanisms of gasdermin family members in inflammasome signaling and cell death. Journal of Molecular Biology. 2018, 430(18), 3068-80.
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016, 535(7610), 153-8.
He WT, Wan H, Hu L, Chen P, Wang X, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Research. 2015, 25(12), 1285-98.
Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015, 526(7575), 666-71.
Shi J, Zhao Y, Wang K, Shi X, Wang Y, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015, 526(7575), 660-5.
Pizato N, Luzete BC, Kiffer LFMV, Corrêa LH, de Oliveira Santos I, et al. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Scientific Reports. 2018, 8(1), 1952.
Yue E, Tuguzbaeva G, Chen X, Qin Y, Li A, et al. Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology. 2019, 56, 286-94.
Wang L, Li K, Lin X, Yao Z, Wang S, et al. Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Letters. 2019, 450, 22-31.
Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nature Communications. 2017, 8(1), 14128.
Wang Y, Gao W, Shi X, Ding J, Liu W, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017, 547(7661), 99-103.
Lu H, Zhang S, Wu J, Chen M, Cai MC, et al. Molecular targeted therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell death. Clinical Cancer Research. 2018, 24(23), 6066-77.
Zhang CC, Li CG, Wang YF, Xu LH, He XH, et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis: an International Journal on Programmed Cell Death. 2019, 24, 312-25.
Wang Y, Yin B, Li D, Wang G, Han X, et al. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochemical and Biophysical Research Communications. 2018, 495(1), 1418-25.
Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J, et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death & Disease. 2019, 10(3), 193.
Li Y, Zhao R, Xiu Z, Yang X, Zhu Y, et al. Neobavaisoflavone induces pyroptosis of liver cancer cells via Tom20 sensing the activated ROS signal. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology. 2023, 116, 154869.
Li H, Deng X, Zhang Z, Yang Z, Huang H, et al. Nitric oxide/paclitaxel micelles enhance anti-liver cancer effects and paclitaxel sensitivity by inducing ferroptosis, endoplasmic reticulum stress and pyroptosis. RSC Advances. 2023, 13(45), 31772-84.
Wang H, He Z, Gao Y, Feng D, Wei X, et al. Dual-Pronged Attack: pH-Driven Membrane-Anchored NIR Dual-Type Nano-Photosensitizer Excites Immunogenic Pyroptosis and Sequester Immune Checkpoint for Enhanced Prostate Cancer Photo-Immunotherapy. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 2023, 10(28), e2302422.
Kovacs SB, Miao EA. Gasdermins: Effectors of Pyroptosis. Trends in Cell Biology. 2017, 27(9), 673-84.
Guo YW, Zhu L, Duan YT, Hu YQ, Li LB, et al. Ruxolitinib induces apoptosis and pyroptosis of anaplastic thyroid cancer via the transcriptional inhibition of DRP1-mediated mitochondrial fission. Cell Death & Disease. 2024, 15(2), 125.
Wang Y, Gong Y, Li X, Long W, Zhang J, et al. Targeting the ZNF-148/miR-335/SOD2 signaling cascade triggers oxidative stress-mediated pyroptosis and suppresses breast cancer progression. Cancer Medicine. 2023, 12(23), 21308-20.
Zhao T, Yu Z. Modified Gexia-Zhuyu Tang inhibits gastric cancer progression by restoring gut microbiota and regulating pyroptosis. Cancer Cell International. 2024, 24(1), 21.
Deng Y, Jia F, Jiang P, Chen L, Xing L, et al. Biomimetic nanoparticle synchronizing pyroptosis induction and mitophagy inhibition for anti-tumor therapy. Biomaterials. 2023, 301, 122293.
Zhou Y, Zhang W, Wang B, Wang P, Li D, et al. Mitochondria-targeted photodynamic therapy triggers GSDME-mediated pyroptosis and sensitizes anti-PD-1 therapy in colorectal cancer. Journal for Immunotherapy of Cancer. 2024, 12(3).
Kumar D, Gurrapu S, Wang Y, Bae SY, Pandey PR, et al. LncRNA Malat1 suppresses pyroptosis and T cell-mediated killing of incipient metastatic cells. Nature Cancer. 2024, 5(2), 262-82.
Mowers EE, Sharifi MN, Macleod KF. Autophagy in cancer metastasis. Oncogene. 2017, 36(12), 1619-30.
Hou J, Han Z, Zhao N, Wei L. Autophagy and Tumour Metastasis. Advances in Experimental Medicine and Biology. 2020, 1207, 315-38.
Denisenko TV, Pivnyuk AD, Zhivotovsky B. p53-Autophagy-Metastasis Link. Cancers. 2018, 10(5).
Wang X, Lee J, Xie C. Autophagy Regulation on Cancer Stem Cell Maintenance, Metastasis, and Therapy Resistance. Cancers. 2022, 14(2).
Holm TM, Yeo S, Turner KM, Guan JL. Targeting Autophagy in Thyroid Cancer: EMT, Apoptosis, and Cancer Stem Cells. Frontiers in Cell and Developmental Biology. 2022, 10, 821855.
Si L, Yang Z, Ding L, Zhang D. Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: a new era for cancer treatment. Journal of Cancer Research and Clinical Oncology. 2022, 148(3), 547-64.
Chen HT, Liu H, Mao MJ, Tan Y, Mo XQ, et al. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Molecular Cancer. 2019, 18(1), 101.
Taylor MA, Das BC, Ray SK. Targeting autophagy for combating chemoresistance and radioresistance in Glioblastoma. Apoptosis: an International Journal on Programmed Cell death. 2018, 23(11-12), 563-75.
Zhang H, Lu B. The Roles of ceRNAs-Mediated Autophagy in Cancer Chemoresistance and Metastasis. Cancers. 2020, 12(10).
Hou X, Jiang J, Tian Z, Wei L. Autophagy and Tumour Chemotherapy. Advances in Experimental Medicine and Biology. 2020, 1207, 351-74.
Deng W, Shang H, Tong Y, Liu X, Huang Q, et al. The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. Journal of Nanobiotechnology. 2024, 22(1), 97.
Wu YH, Chen RJ, Chiu HW, Yang LX, Wang YL, et al. Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: pivotal role of autophagy. Theranostics. 2023, 13(1), 40-58.
Lu J, Cai L, Dai Y, Liu Y, Zuo F, et al. Polydopamine-Based Nanoparticles for Photothermal Therapy/Chemotherapy and their Synergistic Therapy with Autophagy Inhibitor to Promote Antitumor Treatment. Chemical Record (New York, NY). 2021, 21(4), 781-96.
Marabada D, Li J, Wei S, Huang Q, Wang Z. Cyclodextrin based nanoparticles for smart drug delivery in colorectal cancer. Chemical Biology & Drug Design. 2023, 102(6), 1618-31.
Li J, Zhang J, Gao Y, Lei S, Wu J, et al. Targeted siRNA Delivery by Bioinspired Cancer Cell Membrane-Coated Nanoparticles with Enhanced Anti-Cancer Immunity. International Journal of Nanomedicine. 2023, 18, 5961-82.
Chan WJ, Urandur S, Li H, Goudar VS. Recent advances in copper sulfide nanoparticles for phototherapy of bacterial infections and cancer. Nanomedicine (London, England). 2023, 18(30), 2185-204.
Liu D, Liang S, Ma K, Meng QF, Li X, et al. Tumor Microenvironment - Responsive Nanoparticles Amplifying STING Signaling Pathway for Cancer Immunotherapy. Advanced Materials (Deerfield Beach, Fla). 2024, 36(6), e2304845.
Liu Z, Zhao L, Feng Y, Wang Q, Dong N, et al. Dual-responsive PEG-lipid polyester nanoparticles for siRNA and vaccine delivery elicit anti-cancer immune responses by modulating tumor microenvironment. Biomaterials Science. 2023, 11(19), 6619-34.
Zhang A, Gao L. The Refined Application and Evolution of Nanotechnology in Enhancing Radiosensitivity During Radiotherapy: Transitioning from Gold Nanoparticles to Multifunctional Nanomaterials. International Journal of Nanomedicine. 2023, 18, 6233-56.
Wu S, Wang J, Fu Z, Familiari G, Relucenti M, et al. Matairesinol Nanoparticles Restore Chemosensitivity and Suppress Colorectal Cancer Progression in Preclinical Models: Role of Lipid Metabolism Reprogramming. Nano Letters. 2023, 23(5), 1970-80.
Liu Z, Zhou X, Li Q, Shen Y, Zhou T, et al. Macrophage-evading and tumor-specific apoptosis inducing nanoparticles for targeted cancer therapy. Acta Pharmaceutica Sinica B. 2023, 13(1), 327-43.
Akhtar MJ, Alhadlaq HA, Kumar S, Alrokayan SA, Ahamed M. Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy. Archives of Toxicology. 2015, 89(11), 1895-907.
Chen HY, Deng J, Wang Y, Wu CQ, Li X, et al. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomaterialia. 2020, 112, 1-13.
Du W, Zong Q, Guo R, Ling G, Zhang P. Injectable Nanocomposite Hydrogels for Cancer Therapy. Macromolecular Bioscience. 2021,,21(11), e2100186.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Cancer Biomoleculars and Therapeutics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.