Enhancing Gastrointеstinal (GI) Cancer Therapies with Ganoderma Lucidum: A Review of Mechanisms and Efficacy

Authors

  • Kaushal Kishor Sharma Department of Health Science, University of the People, Pasadena, CA 91101, USA https://orcid.org/0000-0001-9711-9080
  • Saksham Gupta Department of Biochemistry, Bundelkhand University, Jhansi 284128, India
  • Prakash S. Bisen School of Studies in Biotechnology Jiwaji University, Gwalior 474010, India

DOI:

https://doi.org/10.62382/jcbt.v2i1.28

Keywords:

Gastrointestinal GI cancer, G. lucidum, Proliferation, Apoptosis, Metastasis, Autophagy

Abstract

Gastrointestinal (GI) cancer stands as a global health challenge, necessitating effective therapeutic approaches with minimal adverse еffеct. This review delves into the potential of Ganoderma lucidum, a macro fungus, commonly recognized for its medicinal properties, in traditional Chinese medicine. Macro fungus acts as a promising adjunct for treating gastrointestinal cancer. The bioactive compounds from Ganoderma lucidum are polysaccharides, triterpenes, and proteins demonstrating anti-tumor activities by modulating key cellular mechanisms such as proliferation, apoptosis, metastasis, and autophagy. This review elucidates the mechanisms underpinning G. lucidum's anti-GI cancer properties through an extensive exploration of available literature. Furthermore, it provides understanding of the clinical applications of Ganoderma lucidum, shedding light on its potential as a complementary therapeutic option in the realm of both traditional Chinese and western medicine. The comprehensive analysis presented herein aims to serve as a valuable guide for future studies endeavors, fostering a dееpеr understanding of G. lucidum’s role in both preventing and treating GI cancer.

Downloads

Download data is not yet available.

References

Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: asecondary analysis of the global cancer statistics 2020. Chinese Medical Journal. 2021, 134(07), 783-91.

Bisen PS, Khan Z, Bundela S. Biology of oral cancer: Key apoptotic regulators. CRC Press. 2013, 15.

Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2020, 1873(1), 188314.

Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. The Lancet. 2020, 396(10251), 635-648.

Khan Z, P Tiwari R, Khan N, BKS Prasad G, S Bisen P. Induction of apoptosis and sensitization of head and neck squamous carcinoma cells to cisplatin by targeting survivin gene expression. Current Gene therapy. 2012, 12(6), 444-53.

Dekker E, Tanis PJ, Vleugels JL, Kasi PM, Wallace MB. Colorectal cancer. The Lancet. 2019, 394(10207), 1467-1480.

Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 2022, 163(2), 386-402.

Demarest CT, Chang AC. The landmark series: multimodal therapy for esophageal cancer. Annals of Surgical Oncology. 2021, 28(6), 3375-3382.

Sanodiya BS, Thakur GS, Baghel RK, Prasad GB, Bisen PS. Ganoderma lucidum: a potent pharmacological macrofungus. Current Pharmaceutical Biotechnology. 2009, 10(8), 717-42.

Liu C, Cao M, Yang N, Reid‐Adam J, Tversky J, et al. Time‐dependent dual beneficial modulation of interferon‐γ, interleukin 5, and Treg cytokines in asthma patient peripheral blood mononuclear cells by ganoderic acid B. Phytotherapy Research. 2022, 36(3), 1231-1240.

Chiu HF, Fu HY, Lu YY, Han YC, Shen YC, et al. Triterpenoids and polysaccharide peptides-enriched Ganoderma lucidum: a randomized, double-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers. Pharmaceutical Biology. 2017, 55(1), 1041-1046.

Yu N, Huang Y, Jiang Y, Zou L, Liu X, et al. Ganoderma lucidum triterpenoids (GLTs) reduce neuronal apoptosis via inhibition of ROCK signal pathway in APP/PS1 transgenic Alzheimer’s disease mice. Oxidative Medicine and Cellular Longevity. 2020, 2020(1), 9894037.

Yao C, Wang Z, Jiang H, Yan R, Huang Q, et al. Ganoderma lucidum promotes sleep through a gut microbiota-dependent and serotonin-involved pathway in mice. Scientific Reports. 2021, 11(1), 13660.

Jin H, Song C, Zhao Z, Zhou G. Ganoderma lucidum polysaccharide, an extract from ganoderma lucidum, exerts suppressive effect on cervical cancer cell malignancy through mitigating epithelial-mesenchymal and JAK/STAT5 signaling pathway. Pharmacology. 2020, 105(7-8), 461-470.

Zhong M, Huang J, Mao P, He C, Yuan D, et al. Ganoderma lucidum polysaccharide inhibits the proliferation of leukemic cells through apoptosis. Acta Biochimica Polonica. 2022, 69(3), 639-645.

Hsu WH, Qiu WL, Tsao SM, Tseng AJ, Lu MK, et al. Effects of WSG, a polysaccharide from Ganoderma lucidum, on suppressing cell growth and mobility of lung cancer. International Journal of Biological Macromolecules. 2020, 165(Pt A), 1604-1613.

Fang L, Zhao Q, Guo C, Guo D, Li Z, et al. Removing the sporoderm from the sporoderm-broken spores of Ganoderma lucidum improves the anticancer and immune-regulatory activity of the water-soluble polysaccharide. Frontiers in Nutrition. 2022, 9, 1006127.

Sun LX, Li WD, Lin ZB, Duan XS, Li XF, et al. Protection against lung cancer patient plasma-induced lymphocyte suppression by Ganoderma lucidum polysaccharides. Cellular Physiology and Biochemistry. 2014, 33(2), 289-99.

Oka S, Tanaka S, Yoshida S, Hiyama T, Ueno Y, et al. Ganoderma lucidum mycelia suppresses the development of colorectal adenomas. Hiroshima Journal of Medical Sciences. 2010, 59(1), 1-6.

Deng Y, Ma J, Tang D, Zhang Q. Dynamic biomarkers indicate the immunological benefits provided by Ganoderma spore powder in post-operative breast and lung cancer patients. Clinical and Translational Oncology. 2021, 23(7), 1481-1490.

Marghalani AM, Salman TO, Faqeeh FJ, Asiri MK, Kabel AM. Gastric carcinoma: insights into risk factors, methods of diagnosis, possible lines of management, and the role of primary care. Journal of Family Medicine and Primary Care. 2020, 9(6), 2659-2663.

Sitarz R, Skierucha M, Mielko J, Offerhaus GJ, Maciejewski R, et al. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Management and Research. 2018, 10, 239-248.

Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer. The Journal of Clinical Investigation. 2007, 117(1), 60-9.

Glasgow SC, Hardiman KM. Sporadic and Inherited Colorectal Cancer: How Epidemiology and Molecular Biology Guide Screening and Treatment. The ASCRS Textbook of Colon and Rectal Surgery. 2022, 397-412.

Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015, 64(3), 381-7.

Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018, 154(2), 360-373.

Offman J, Muldrew B, O’Donovan M, Debiram-Beecham I, Pesola F, et al. Barrett’s oESophagus trial 3 (BEST3): study protocol for a randomised controlled trial comparing the Cytosponge-TFF3 test with usual care to facilitate the diagnosis of oesophageal pre-cancer in primary care patients with chronic acid reflux. BMC Cancer. 2018, 18(1), 784.

CP H. The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiologic Reviews. 1986, 8, 1-27.

Areia M, Carvalho R, Cadime AT, Rocha Gonçalves F, Dinis‐Ribeiro M. Screening for gastric cancer and surveillance of premalignant lesions: a systematic review of cost‐effectiveness studies. Helicobacter. 2013, 18(5), 325-37.

Fidler MM, Bray F, Vaccarella S, Soerjomataram I. Assessing global transitions in human development and colorectal cancer incidence. International Journal of Cancer. 2017, 140(12), 2709-2715.

Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, et al. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Annals of Oncology. 2011, 22(9), 1958-1972.

Pilleron S, Sarfati D, Janssen‐Heijnen M, Vignat J, Ferlay J, et al. Global cancer incidence in older adults, 2012 and 2035: a population‐based study. International Journal of Cancer. 2019, 144(1), 49-58.

Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. The Lancet. 2005, 366(9493), 1303-14.

Petrick JL, McGlynn KA. The changing epidemiology of primary liver cancer. Current Epidemiology Reports. 2019, 6(2), 104-111.

Songserm N, Promthet S, Sithithaworn P, Pientong C, Ekalaksananan T, et al. Risk factors for cholangiocarcinoma in high-risk area of Thailand: role of lifestyle, diet and methylenetetrahydrofolate reductase polymorphisms. Cancer Epidemiology. 2012, 36(2), e89-94.

GBD 2017 Pancreatic Cancer Collaborators. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatology. 2019, 4(12), 934-947.

Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Communications. 2019, 39(1), 22.

Khan Z, Bisen PS. Oncoapoptotic signaling and deregulated target genes in cancers: special reference to oral cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2013, 1836(1), 123-45.

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2011, 144(5), 646-74.

Stoffel EM. Heritable gastrointestinal cancer syndromes. Gastroenterology Clinics of North America. 2016, 45(3), 509-27.

Blackadar CB. Historical review of the causes of cancer. World Journal of Clinical Oncology. 2016, 7(1), 54-86.

Nam JH, Murthy S. Chronic inflammation and cancer in various organ systems. Cancer and Inflammation 2004, 1-20.

Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009, 30(7), 1073-81.

Sadikovic B, Al-Romaih K, Squire JA, Zielenska M. Cause and consequences of genetic and epigenetic alterations in human cancer. Current Genomics. 2008, 9(6), 394-408.

Schady DA, Roy A, Finegold MJ. Liver tumors in children with metabolic disorders. Translational Pediatrics. 2015, 4(4), 290-303.

Villanueva A, Newell P, Hoshida Y. Inherited hepatocellular carcinoma. Best Practice & Research Clinical Gastroenterology. 2010, 24(5), 725-34.

Haddad A, Kowdley GC, Pawlik TM, Cunningham SC. Hereditary pancreatic and hepatobiliary cancers. International Journal of Surgical Oncology. 2011, 2011(1), 154673.

Hegde M, Ferber M, Mao R, Samowitz W, Ganguly A. ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis). Genetics in Medicine. 2014, 16(1), 101-16.

Nagy R, Sweet K, Eng C. Highly penetrant hereditary cancer syndromes. Oncogene. 2004, 23(38), 6445-70.

Lawley PD. From fluorescence spectra to mutational spectra, a historical overview of DNA-reactive compounds. IARC Scientific Publications. 1994, (125), 3-22.

Groopman JD, Cain LG, Kensler TW, Harris CC. Aflatoxin exposure in human populations: measurements and relationship to cancer. CRC Critical Reviews in Toxicology. 1988, 19(2), 113-45.

Ta U. Intestinal inflammation and cancer. Gastroenterology. 2011, 140(6), 1807-16.

Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis. Archives of Biochemistry and Biophysics. 2003, 417(1), 3-11.

Massagué J. TGFβ in cancer. Cell. 2008, 134(2), 215-30.

Wang D, DuBois RN. Eicosanoids and cancer. Nature Reviews Cancer. 2010, 10(3), 181-93.

Blair IA. Lipid hydroperoxide-mediated DNA damage. Experimental Gerontology. 2001, 36(9), 1473-81.

Nowell PC. The Clonal Evolution of Tumor Cell Populations: Acquired genetic lability permits stepwise selection of variant sublines and underlies tumor progression. Science. 1976, 194(4260), 23-28.

Huang XZ, Chen Y, Wu J, Zhang X, Wu CC, et al. Aspirin and non-steroidal anti-inflammatory drugs use reduce gastric cancer risk: A dose-response meta-analysis. Oncotarget. 2017, 8(3), 4781-4795.

Sadava D, Still DW, Mudry RR, Kane SE. Effect of Ganoderma on drug-sensitive and multidrug-resistant small-cell lung carcinoma cells. Cancer Letters. 2009, 277(2), 182-9.

Deepalakshmi K, Mirunalini S. Therapeutic properties and current medical usage of medicinal mushroom: Ganoderma lucidum. International Journal of Pharmaceutical Sciences and Research. 2011, 2(8), 1922.

Geng X, Zhong D, Su L, Lin Z, Yang B. Preventive and therapeutic effect of Ganoderma lucidum on kidney injuries and diseases. Advances in Pharmacology. 2020, 87, 257-276.

Ahmad MF. Ganoderma lucidum: A rational pharmacological approach to surmount cancer. Journal of Ethnopharmacology. 2020, 260, 113047.

Oke MA, Afolabi FJ, Oyeleke OO, Kilani TA, Adeosun AR, et al. Ganoderma lucidum: Unutilized natural medicine and promising future solution to emerging diseases in Africa. Frontiers in Pharmacology. 2022, 13, 952027.

Ahmad MF, Ahmad FA, Khan MI, Alsayegh AA, Wahab S, et al. Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. International Journal of Biological Macromolecules. 2021, 187, 769-779.

Angulo-Sanchez LT, López-Peña D, Torres-Moreno H, Gutiérrez A, Gaitán-Hernández R, et al. Biosynthesis, gene expression, and pharmacological properties of triterpenoids of Ganoderma species (Agaricomycetes): a review. International Journal of Medicinal Mushrooms. 2022, 24(6), 1-17.

Ahmad R, Riaz M, Khan A, Aljamea A, Algheryafi M, et al. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytotherapy Research. 2021, 35(11), 6030-6062.

Kladar NV, Gavarić NS, Božin BN. Ganoderma: insights into anticancer effects. European Journal of Cancer Prevention. 2016, 25(5), 462-71.

Huie CW, Di X. Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. Journal of Chromatography B. 2004, 812(1-2), 241-57.

Su CH, Yang YZ, Ho HO, Hu CH, Sheu MT. High-performance liquid chromatographic analysis for the characterization of triterpenoids from Ganoderma. Journal of Chromatographic Science. 2001, 39(3), 93-100.

Müller CI, Kumagai T, O’Kelly J, Seeram NP, Heber D, et al. Ganoderma lucidum causes apoptosis in leukemia, lymphoma and multiple myeloma cells. Leukemia Research. 2006, 30(7), 841-8.

Lau MF, Phan CW, Sabaratnam V, Kuppusamy UR. Bibliometric, taxonomic, and medicinal perspectives of Ganoderma neo-japonicum Imazeki: A mini review. Mycology. 2024, 15(3), 360-373.

Weng CJ, Yen GC. The in vitro and in vivo experimental evidences disclose the chemopreventive effects of Ganoderma lucidum on cancer invasion and metastasis. Clinical & Experimental Metastasis. 2010, 27, 361-9.

Sliva D, Labarrere C, Slivova V, Sedlak M, Lloyd Jr FP, et al. Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochemical and Biophysical Research Rommunications. 2002, 298(4), 603-12.

Thyagarajan A, Jiang J, Hopf A, Adamec J, Sliva D. Inhibition of oxidative stress-induced invasiveness of cancer cells by Ganoderma lucidum is mediated through the suppression of interleukin-8 secretion. International Journal of Molecular Medicine. 2006, 18(4), 657-64.

Sliva D, Sedlak M, Slivova V, Valachovicova T, Lloyd Jr FP, et al. Biologic activity of spores and dried powder from Ganoderma lucidum for the inhibition of highly invasive human breast and prostate cancer cells. The Journal of Alternative & Complementary Medicine. 2003, 9(4), 491-7.

Jiang J, Slivova V, Harvey K, Valachovicova T, Sliva D. Ganoderma lucidum suppresses growth of breast cancer cells through the inhibition of Akt/NF-κB signaling. Nutrition and Cancer. 2004, 49(2), 209-16.

Jiang J, Slivova V, Sliva D. Ganoderma lucidum inhibits proliferation of human breast cancer cells by down-regulation of estrogen receptor and NF-κB signaling. International Journal of Oncology. 2006, 29(3), 695-703.

Stanley G, Harvey K, Slivova V, Jiang J, Sliva D. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-β1 from prostate cancer cells. Biochemical and Biophysical Research Communications. 2005, 330(1), 46-52.

Jiang J, Slivova V, Valachovicova T, Harvey K, Sliva D. Ganoderma lucidum inhibits proliferation and induces apoptosis in human prostate cancer cells PC-3. International Journal of Oncology. 2004, 24(5), 1093-9.

Thyagarajan A, Zhu J, Sliva D. Combined effect of green tea and Ganoderma lucidum on invasive behavior of breast cancer cells. International Journal of Oncology. 2007, 30(4), 963-9.

Sliva D, Loganathan J, Jiang J, Jedinak A, Lamb JG, et al. Mushroom Ganoderma lucidum prevents colitis-associated carcinogenesis in mice. PLoS One. 2012, 7(10), e47873.

Xie JT, Wang CZ, Wicks S, Yin JJ, Kong J, et al. Ganoderma lucidum extract inhibits proliferation of SW 480 human colorectal cancer cells. Experimental Oncology. 2006, 28(1), 25-9.

Calviño E, Manjón JL, Sancho P, Tejedor MC, Herráez A, et al. Ganoderma lucidum induced apoptosis in NB4 human leukemia cells: involvement of Akt and Erk. Journal of Ethnopharmacology. 2010, 128(1), 71-8.

Hsieh TC, Wu JM. Suppression of proliferation and oxidative stress by extracts of Ganoderma lucidum in the ovarian cancer cell line OVCAR-3. International Journal of Molecular Medicine. 2011, 28(6), 1065-9.

Tomasi S, Lohezic-Le Devehat F, Sauleau P, Bezivin C, Boustie J. Cytotoxic activity of methanol extracts from Basidiomycete mushrooms on murine cancer cell lines. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2004, 59(4), 290-3.

Liu YW, Gao JL, Guan J, Qian ZM, Feng K, et al. Evaluation of antiproliferative activities and action mechanisms of extracts from two species of Ganoderma on tumor cell lines. Journal of Agricultural and Food Chemistry. 2009, 57(8), 3087-93.

Lin SB, Li CH, Lee SS, Kan LS. Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest. Life Sciences. 2003, 72(21), 2381-90.

Lu QY, Jin YS, Zhang Q, Zhang Z, Heber D, et al. Ganoderma lucidum extracts inhibit growth and induce actin polymerization in bladder cancer cells in vitro. Cancer Letters. 2004, 216(1), 9-20.

Dudhgaonkar S, Thyagarajan A, Sliva D. Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. International Immunopharmacology. 2009, 9(11), 1272-80.

Levine B. Autophagy and cancer. Nature. 2007, 446(7137), 745-747.

Thyagarajan A, Jedinak A, Nguyen H, Terry C, Baldridge LA, et al. Triterpenes from Ganoderma Lucidum induce autophagy in colon cancer through the inhibition of p38 mitogen-activated kinase (p38 MAPK). Nutrition and Cancer. 2010, 62(5), 630-40.

Chen C, Wang HB, Wu YY. Inhibitory effects of Ganoderma lucidum extracts and spores oil on tumor cells in vitro and in vivo and on DNA topoisomerases. Pharmacology and Clinics of Chinese Materia Medica. 2008, 134, 47-51.

Smina TP, De S, Devasagayam TP, Adhikari S, Janardhanan KK. Ganoderma lucidum total triterpenes prevent radiation-induced DNA damage and apoptosis in splenic lymphocytes in vitro. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2011, 726(2), 188-94.

Ferreira IC, Heleno SA, Reis FS, Stojkovic D, Queiroz MJ, et al. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry. 2015, 114, 38-55.

Yen GC, Wu JY. Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chemistry. 1999, 65(3), 375-9.

Cor D, Knez Z, Knez HM. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules. 2018, 23(3), 649.

Boh B. Ganoderma lucidum: a potential for biotechnological production of anti-cancer and immunomodulatory drugs. Recent Patents on Anti-cancer Drug Discovery. 2013, 8(3), 255-87.

Boh B, Berovic M, Zhang J, Zhi-Bin L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnology Annual Review. 2007, 13, 265-301.

Cheng CR, Yue QX, Wu ZY, Song XY, Tao SJ, et al. Cytotoxic triterpenoids from Ganoderma lucidum. Phytochemistry. 2010, 71(13, 1579-85.

Wu GS, Lu JJ, Guo JJ, Li YB, Tan W, et al. Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. Fitoterapia. 2012, 83(2), 408-14.

Miyamoto I, Liu J, Shimizu K, Sato M, Kukita A, et al. Regulation of osteoclastogenesis by ganoderic acid DM isolated from Ganoderma lucidum. European Journal of Pharmacology. 2009, 602(1), 1-7.

Kaushal SK, Shailesh K, Brijendra S, Saurabh B, Nisha P, et al. Targeting fatty acid synthase protein by molecular docking studies of naturally occurring ganoderic acid analogues acting as anti-obesity molecule. Research Journal of Biotechnology. 2019, 14, 7.

Xu K, Liang X, Gao F, Zhong J, Liu J. Antimetastatic effect of ganoderic acid T in vitro through inhibition of cancer cell invasion. Process Biochemistry. 2010, 45(8), 1261-7.

J, Shimizu K, Tanaka A, Shinobu W, Ohnuki K, et al. Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms. Scientific Reports. 2012, 2(1), 905.

Johnson BM, Doonan BP, Radwan FF, Haque A. Ganoderic acid DM: an alternative agent for the treatment of advanced prostate cancer. The Open Prostate Cancer Journal. 2010, 3, 78.

Liu J, Shiono J, Shimizu K, Kondo R. Ganoderic acids from Ganoderma lucidum: inhibitory activity of osteoclastic differentiation and structural criteria. Planta Medica. 2010, 76(02), 137-9.

Liu J, Shiono J, Tsuji Y, Shimizu K, Kondo R. Methyl ganoderic acid DM: A selective potent osteoclastogenesis inhibitor. The Open Bioactive Compounds Journal. 2009, 26, 2(1).

Chen NH, Zhong JJ. p53 is important for the anti-invasion of ganoderic acid T in human carcinoma cells. Phytomedicine. 2011, 18(8-9), 719-25.

Liu RM, Li YB, Zhong JJ. Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro. European Journal of Pharmacology. 2012, 681(1-3), 23-33.

Ruan W, Lim AH, Huang LG, Popovich DG. Extraction optimisation and isolation of triterpenoids from Ganoderma lucidum and their effect on human carcinoma cell growth. Natural Product Research. 2014, 28(24), 2264-72.

Huang X, Nie S. The structure of mushroom polysaccharides and their beneficial role in health. Food & Function. 2015, 6(10), 3205-17.

Jiang W, Hu Y, Zhu Z. Structural characteristics of polysaccharide from Zingiber striolatum and its effects on gut microbiota composition in obese mice. Frontiers in Nutrition. 2022, 9, 1012030.

De Silva DD, Rapior S, Fons F, Bahkali AH, Hyde KD. Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. Fungal Diversity. 2012, 55, 1-35.

Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydrate Research. 2016, 424, 30-41.

Zhang J, Gao X, Pan Y, Xu N, Jia L. Toxicology and immunology of Ganoderma lucidum polysaccharides in Kunming mice and Wistar rats. International Journal of Biological Macromolecules. 2016, 85, 302-10.

Wen L, Sheng Z, Wang J, Jiang Y, Yang B. Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity. Food Chemistry. 2022, 373, 131374.

Zhang J, Meng G, Zhai G, Yang Y, Zhao H, et al. Extraction, characterization and antioxidant activity of polysaccharides of spent mushroom compost of Ganoderma lucidum. International Journal of Biological Macromolecules. 2016, 82, 432-9.

Hsu TL, Cheng SC, Yang WB, Chin SW, Chen BH, et al. Profiling carbohydrate-receptor interaction with recombinant innate immunity receptor-Fc fusion proteins. Journal of Biological Chemistry. 2009, 284(50), 34479-89.

Nie S, Zhang H, Li W, Xie M. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. Bioactive Carbohydrates and Dietary Fibre. 2013, 1(1), 10-20.

Wong JH, Ng TB, Chan HH, Liu Q, Man GC, et al. Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Applied Microbiology and Biotechnology. 2020, 104, 4675-703.

Pan D, Wang L, Chen C, Hu B, Zhou P. Isolation and characterization of a hyperbranched proteoglycan from Ganoderma lucidum for anti-diabetes. Carbohydrate Polymers. 2015, 117, 106-14.

Gazi U, Martinez-Pomares L. Influence of the mannose receptor in host immune responses. Immunobiology. 2009, 214(7), 554-61.

Kou F, Ge Y, Wang W, Mei Y, Cao L, et al. A review of Ganoderma lucidum polysaccharides: Health benefit, structure-activity relationship, modification, and nanoparticle encapsulation. International Journal of Biological Macromolecules. 2023, 243, 125199.

Wang PY, Zhu XL, Lin ZB. Antitumor and immunomodulatory effects of polysaccharides from broken-spore of Ganoderma lucidum. Frontiers in Pharmacology. 2012, 3, 135.

Liang Z, Guo YT, Yi YJ, Wang RC, Hu QL, et al. Ganoderma lucidum polysaccharides target a Fas/caspase dependent pathway to induce apoptosis in human colon cancer cells. Asian Pacific Journal of Cancer Prevention. 2014, 15(9), 3981-6.

Liang Z, Yi Y, Guo Y, Wang R, Hu Q, et al. Chemical characterization and antitumor activities of polysaccharide extracted from Ganoderma lucidum. International Journal of Molecular Sciences. 2014, 15(5), 9103-16.

Liang ZE, Yi YJ, Guo YT, Wang RC, Hu QL, et al. Inhibition of migration and induction of apoptosis in LoVo human colon cancer cells by polysaccharides from Ganoderma lucidum. Molecular Medicine Reports. 2015, 12(5), 7629-36.

Jiang D, Wang L, Zhao T, Zhang Z, Zhang R, et al. Restoration of the tumor-suppressor function to mutant p53 by Ganoderma lucidum polysaccharides in colorectal cancer cells. Oncology Reports. 2017, 37(1), 594-600.

Na K, Li K, Sang T, Wu K, Wang Y, et al. Anticarcinogenic effects of water extract of sporoderm-broken spores of Ganoderma lucidum on colorectal cancer in vitro and in vivo. International Journal of Oncology. 2017, 50(5), 1541-54.

Luo J, Zhang C, Liu R, Gao L, Ou S, et al. Ganoderma lucidum polysaccharide alleviating colorectal cancer by alteration of special gut bacteria and regulation of gene expression of colonic epithelial cells. Journal of Functional Foods. 2018, 47, 127-35.

Pang G, Wang F, Zhang LW. Dose matters: Direct killing or immunoregulatory effects of natural polysaccharides in cancer treatment. Carbohydrate Polymers. 2018, 195, 243-56.

Wang SY, Hsu ML, Hsu HC, Tzeng CH, Lee SS, et al. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. International Journal of Cancer, 70(6), 699-705.

Liu MM, Liu T, Yeung S, Wang Z, Andresen B, et al. Inhibitory activity of medicinal mushroom Ganoderma lucidum on colorectal cancer by attenuating inflammation. Precision Clinical Medicine. 2021, 4(4), 231-45.

Liu Y, Wang Y, Zhou S, Yan M, Tang Q, et al. Structure and chain conformation of bioactive β-D-glucan purified from water extracts of Ganoderma lucidum unbroken spores. International Journal of Biological Macromolecules. 2021, 180, 484-93.

Zhao S, Lei M, Xu H, He H, Suvorov A, et al. The normal cell proliferation and wound healing effect of polysaccharides from Ganoderma amboinense. Food Science and Human Wellness. 2021, 10(4), 508-13.

Zhong J, Fang L, Chen R, Xu J, Guo D, et al. Polysaccharides from sporoderm‑removed spores of Ganoderma lucidum induce apoptosis in human gastric cancer cells via disruption of autophagic flux. Oncology Letters. 2021, 21(5), 1-2.

Ahmad MF. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomedicine & Pharmacotherapy. 2018, 107, 507-19.

Falandysz J. Selenium in edible mushrooms. Journal of Environmental Science and Health Part C. 2008, 26(3), 256-99.

Hu XS, Zhao G. Positive effect of selenium on the immune regulation activity of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst.(Aphyllophoromycetideae), Proteins In Vitro. International Journal of Medicinal Mushrooms. 2008, 10(4).

Fukuzawa M, Yamaguchi R, Hide I, Chen Z, Hirai Y, et al. Possible involvement of long chain fatty acids in the spores of Ganoderma lucidum (Reishi Houshi) to its anti-tumor activity. Biological and Pharmaceutical Bulletin. 2008, 31(10), 1933-7.

Wasser SP. Reishi or ling zhi (Ganoderma lucidum). Encyclopedia of Dietary Supplements. 2005, 1, 603-22.

Davies JA. Growth, Proliferation and Death: A Brief Overview. Mechanisms of Morphogenesis. 2023, 335-360.

Sharma KK, Singh B, Mujwar S, Bisen PS. Molecular docking based analysis to elucidate the DNA topoisomerase IIβ as the potential target for the ganoderic acid; a natural therapeutic agent in cancer therapy. Current Computer-aided Drug Design. 2020, 16(2), 176-89.

Yang N, Ray SD, Krafts K. Cell proliferation. In Encyclopedia of Toxicology: Third Edition 2014 Jan 1 (pp. 761-765). Elsevier.

Liu X, Xu Y, Li Y, Pan Y, Sun Z, et al. Ganoderma lucidum fruiting body extracts inhibit colorectal cancer by inducing apoptosis, autophagy, and G0/G1 phase cell cycle arrest in vitro and in vivo. Am J Transl Res. 2020, 12(6), 2675-2684.

Zeng Z, Xiao K. Ganoderma lucidum Polysaccharide (GLP) Inhibited the Progression of Oral Squamous Cell Carcinoma via the miR‐188/BCL9/β‐Catenin Pathway. Advances in Polymer Technology. 2020, 2020(1), 7472314.

Morana O, Wood W, Gregory CD. The apoptosis paradox in cancer. International Journal of Molecular Sciences. 2022, 23(3), 1328.

Liu T, Zhang M, Zhang H, Sun C, Deng Y. Inhibitory effects of cucurbitacin B on laryngeal squamous cell carcinoma. European Archives of Oto-rhino-laryngology. 2008, 265, 1225-32.

Yin D, Wakimoto N, Xing H, Lu D, Huynh T, et al. Cucurbitacin B markedly inhibits growth and rapidly affects the cytoskeleton in glioblastoma multiforme. International Journal of Cancer. 2008, 123(6), 1364-75.

Wakimoto N, Yin D, O’Kelly J, Haritunians T, Karlan B, et al. Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer Science. 2008, 99(9), 1793-7.

Yasuda S, Yogosawa S, Izutani Y, Nakamura Y, Watanabe H, et al. Cucurbitacin B induces G2 arrest and apoptosis via a reactive oxygen species‐dependent mechanism in human colon adenocarcinoma SW480 cells. Molecular Nutrition & Food research. 2010, 54(4), 559-65.

Khan Z, Tiwari RP, Mulherkar R, Sah NK, Prasad GB, et al. Detection of survivin and p53 in human oral cancer: correlation with clinicopathologic findings. Head & Neck: Journal for the Sciences and Specialties of the Head and Neck. 2009, 31(8), 1039-48.

Reed JC. Cytochrome c: can't live with it-can't live without it. Cell. 1997, 91(5), 559-62.

Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000, 102(1), 33-42.

Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000, 102(1), 43-53.

Hegde R, Srinivasula SM, Datta P, Madesh M, Wassell R, et al. The polypeptide chain-releasing factor GSPT1/eRF3 is proteolytically processed into an IAP-binding protein. Journal of Biological Chemistry. 2003, 278(40), 38699-706.

Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001, 292(5517), 727-30.

Zou H, Li Y, Liu X, Wang X. An APAF-1· cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. Journal of Biological Chemistry. 1999, 274(17), 11549-56.

Yoshida K, Miki Y. The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Science. 2010, 101(4), 831-5.

Stevens M, Oltean S. Modulation of the apoptosis gene Bcl-x function through alternative splicing. Frontiers in Genetics. 2019, 10, 804.

Papadakis ES, Finegan KG, Wang X, Robinson AC, Guo C, et al. The regulation of Bax by c-Jun N-terminal protein kinase (JNK) is a prerequisite to the mitochondrial-induced apoptotic pathway. Febs Letters. 2006, 580(5), 1320-6.

Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, et al. JNK promotes Bax translocation to mitochondria through phosphorylation of 14‐3‐3 proteins. The EMBO Journal. 2004, 23(8), 1889-99.

Tournier C, Hess P, Yang DD, Xu J, Turner TK,et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000, 288(5467), 870-4.

Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nature Genetics. 1999, 21(3), 326-9.

Chen YR, Meyer CF, Tan TH. Persistent Activation of c-Jun N-terminal Kinase 1 (JNK 1) in γ Radiation induced Apoptosis. Journal of Biological Chemistry. 1996, 27(2), 631-4.

Li F, Meng L, Zhou J, Xing H, Wang S, et al. Reversing chemoresistance in cisplatin-resistant human ovarian cancer cells: a role of c-Jun NH2-terminal kinase 1. Biochemical and Biophysical Research Communications. 2005, 335(4), 1070-7.

Fuchs SY, Adler V, Buschmann T, Yin Z, Wu X, Jones SN, Ronai ZE. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes & Development. 1998, 12(17), 2658-63.

Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008, 27(48), 6245-51.

Jones EV, Dickman MJ, Whitmarsh AJ. Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochemical Journal. 2007, 405(3), 617-23.

Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, et al. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. Journal of Biological Chemistry. 2004, 279(9), 8076-83.

Thorburn A. Death receptor-induced cell killing. Cellular Signalling. 2004, 16(2), 139-44.

Esposti MD. The roles of Bid. Apoptosis. 2002, 7(5), 433-40.

Deng Y, Ren X, Yang L, Lin Y, Wu X. A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell. 2003, 115(1), 61-70.

Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. Journal of Biological Chemistry. 2002, 277(1), 439-44.

Kantari C, Walczak H. Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochimica et Biophysica Acta. 2011, 1813(4), 558-63.

Tang F, Tang G, Xiang J, Dai Q, Rosner MR, et al. The absence of NF-κB-mediated inhibition of c-Jun N-terminal kinase activation contributes to tumor necrosis factor alpha-induced apoptosis. Molecular and Cellular Biology. 2002, 22(24), 8571-9.

Dewson G, Kluck RM. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. Journal of Cell Science. 2009, 122(16), 2801-8.

Kim R. Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochemical and Biophysical Research Communications. 2005, 333(2), 336-43.

Kim R, Emi M, Tanabe K, Murakami S, Uchida Y, et al. Regulation and interplay of apoptotic and non‐apoptotic cell death. The Journal of Pathology. 2006, 208(3), 319-26.

Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nature Reviews Cancer. 2002, 2(7), 489-501.

Kale J, Kutuk O, Brito GC, Andrews TS, Leber B, et al. Phosphorylation switches Bax from promoting to inhibiting apoptosis thereby increasing drug resistance. EMBO Reports. 2018, 19(9), e45235.

Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes & Development. 1999, 13(22), 2905-27.

Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. Journal of Biological Chemistry. 2000, 275(15), 10761-6.

Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998, 282(5392), 1318-21.

Cheng X, Xia W, Yang JY, Hsu JL, Lang JY, et al. Activation of murine double minute 2 by Akt in mammary epithelium delays mammary involution and accelerates mammary tumorigenesis. Cancer Research. 2010, 70(19), 7684-9.

Bai D, Ueno L, Vogt PK. Akt‐mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt. International Journal of Cancer. 2009, 125(12), 2863-70.

Nakano H, Nakajima A, Sakon KS, Piao JH, Xue X, et al. Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death and Differentiation. 2006, 13(5), 730-7.

Prasad RC, Wang XL, Law BK, Davis B, Green G, et al. Identification of genes, including the gene encoding p27Kip1, regulated by serine 276 phosphorylation of the p65 subunit of NF-κB. Cancer Letters. 2009, 275(1), 139-49.

Karin M, Cao Y, Greten FR, Li ZW. NF-κB in cancer: from innocent bystander to major culprit. Nature Reviews Cancer. 2002, 2(4), 301-10.

Bentires AM, Barbu V, Fillet M, Chariot A, Relic B, et al. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene. 2003, 22(1), 90-7.

Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G. NF-κB and JNK: an intricate affair. Cell Cycle. 2004, 3(12), 1524-9.

Zhao X, Zhou D, Liu Y, Li C, Zhao X, et al. Ganoderma lucidum polysaccharide inhibits prostate cancer cell migration via the protein arginine methyltransferase 6 signaling pathway. Molecular Medicine Reports. 2018, 17(1), 147-157.

Yang Q, Wang S, Xie Y, Sun J, Wang J. HPLC analysis of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes activity and Bax, Bcl-2 expression. International Journal of Biological Macromolecules. 2010, 46(2), 167-72.

Bai JH, Xu J, Zhao J, Zhang R. Ganoderma lucidum polysaccharide enzymatic hydrolysate suppresses the growth of human colon cancer cells via inducing apoptosis. Cell Transplantation. 2020, 29, 0963689720931435.

Huh S, Lee S, Choi SJ, Wu Z, Cho JH, et al. Quercetin synergistically inhibit EBV-associated gastric carcinoma with Ganoderma lucidum extracts. Molecules. 2019, 24(21), 3834.

Jang KJ, Han MH, Lee BH, Kim BW, Kim CH, et al. Induction of apoptosis by ethanol extracts of Ganoderma lucidum in human gastric carcinoma cells. Journal of Acupuncture and Meridian Studies. 2010, 3(1), 24-31.

Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between PI3K/AKT signalling pathway and cancer. Gene. 2019, 698, 120-128.

Zhu L, Wu M, Li P, Zhou Y, Zhong J, et al. High-pressure supercritical CO2 extracts of Ganoderma lucidum fruiting body and their anti-hepatoma effect associated with the Ras/Raf/MEK/ERK signaling pathway. Frontiers in Pharmacology. 2020, 11, 602702.

Shen R, Xu J, Wang L, Cai B, Song H. Ganoderma lucidum Polysaccharides Inhibit Malignant Phenotype of Hepatocellular Carcinoma Cells by Regulating PI3K/Akt Signaling Pathway. Chinese Journal of Experimental Traditional Medical Formulae. 2023, (24), 88-94.

Yang Y, Wu H. Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: A review. Frontiers in Immunology. 2023, 14, 1147641.

Zhong JY, Chen HB, Ye DZ, Deng ZJ, Shao JJ, et al. Molecular mechanism of Ganoderma against gastric cancer based on network pharmacology and experimental test. China Journal of Chinese Materia Medica. 2022, 47(1), 203-223.

Ye T, Ge Y, Jiang X, Song H, Peng C, et al. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chinese Medicine. 2023, 18(1), 107.

Wu X, Jiang L, Zhang Z, He Y, Teng Y, et al. Pancreatic cancer cell apoptosis is induced by a proteoglycan extracted from Ganoderma lucidum. Oncology Letters. 2021, 21(1), 34.

Song M, Li ZH, Gu HS, Tang RY, Zhang R, et al. Ganoderma lucidum spore polysaccharide inhibits the growth of hepatocellular carcinoma cells by altering macrophage polarity and induction of apoptosis. Journal of Immunology Research. 2021, 2021, 6696606.

Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy. 2020, 5(1), 28.

Helmink BA, Khan MW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nature Medicine. 2019, 25(3), 377-388.

Zepeda RM, Minot SS, Bouzek H, Wu H, Aitor BM, et al. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature. 2024, 628(8007), 424-432.

Lambert AW, Zhang Y, Weinberg RA. Cell-intrinsic and microenvironmental determinants of metastatic colonization. Nature Cell Biology. 2024, 26(5), 687-697.

Radwan FF, Perez JM, Haque A. Apoptotic and immune restoration effects of ganoderic acids define a new prospective for complementary treatment of cancer. Journal of Clinical & Cellular Immunology. 2011, S3, 4.

Zhao H, Hu H, Chen B, Xu W, Zhao J, et al. Overview on the role of E-cadherin in gastric cancer: dysregulation and clinical implications. Frontiers in Molecular Biosciences. 2021, 8, 689139.

Ding Z, Zhou Z, Cheng X, Wang H, Liu J, et al. Inhibitory effects of Ganoderma lucidum triterpenoid on the growth and metastasis of hepatocellular carcinoma. American Journal of Translational Research. 2023, 15(5), 3410-3423.

Zheng C, Rangsinth P, Shiu PH, Wang W, Li R, et al. A review on the sources, structures, and pharmacological activities of lucidenic acids. Molecules. 2023, 28(4), 1756.

Cancemi G, Caserta S, Gangemi S, Pioggia G, Allegra A. Exploring the Therapeutic Potential of Ganoderma lucidum in Cancer. Journal of Clinical Medicine. 2024, 13(4), 1153.

Wu YL, Han F, Luan SS, Ai R, Zhang P, et al. Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects. Journal of Agricultural and Food Chemistry. 2019, 67(18), 5147-5158.

Shao BZ, Chai NL, Yao Y, Li JP, Law HK, et al. Autophagy in gastrointestinal cancers. Frontiers in Oncology. 2022, 12, 975758.

Pan H, Wang Y, Na K, Wang Y, Wang L, et al. Autophagic flux disruption contributes to Ganoderma lucidum polysaccharide-induced apoptosis in human colorectal cancer cells via MAPK/ERK activation. Cell Death & Disease. 2019, 10(6), 456.

Peng HH, Wu CY, Hsiao YC, Martel J, Ke PY, et al. Ganoderma lucidum stimulates autophagy-dependent longevity pathways in Caenorhabditis elegans and human cells. Aging. 2021, 13(10), 13474-13495.

Orlandi G, Roncucci L, Carnevale G, Sena P. Different roles of apoptosis and autophagy in the development of human colorectal cancer. International Journal of Molecular Sciences. 2023, 24(12), 10201.

Melia TJ, Lystad AH, Simonsen A. Autophagosome biogenesis: From membrane growth to closure. Journal of Cell Biology. 2020, 219(6), e202002085.

Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxidants & Redox Signaling. 2014, 20(3), 460-73.

Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nature Reviews Molecular Cell Biology. 2013, 14(12), 759-74.

Hollenstein DM, Kraft C. Autophagosomes are formed at a distinct cellular structure. Current Opinion in Cell Biology. 2020, 65, 50-57.

Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin TM, et al. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Therapy. 2021, 28(12), 1229-1255.

Saxena R, Klochkova A, Murray MG, Kabir MF, Samad S, et al. Roles for autophagy in esophageal carcinogenesis: implications for improving patient outcomes. Cancers. 2019, 11(11), 1697.

Xia H, Green DR, Zou W. Autophagy in tumour immunity and therapy. Nature Reviews Cancer. 2021, 21(5), 281-297.

Tanaka S, Nagashima H, Uotani T, Graham DY, Yamaoka Y. Autophagy‐related genes in Helicobacter pylori infection. Helicobacter. 2017, 22(3), 10.

Thein W, Po WW, Choi WS, Sohn UD. Autophagy and digestive disorders: advances in understanding and therapeutic approaches. Biomolecules & Therapeutics. 2021, 29(4), 353-364.

Olguín JE, Andrade IM, Rodríguez T, Rodríguez SM, Terrazas LI. Relevance of regulatory T cells during colorectal cancer development. Cancers. 2020, 12(7), 1888.

Neumeyer S, Hua X, Seibold P, Jansen L, Benner A, et al. Genetic Variants in the Regulatory T cell-Related Pathway and Colorectal Cancer Prognosis. Cancer Epidemiology, Biomarkers & Prevention. 2020, 29(12), 2719-2728.

Lauzier A, Normandeau GJ, Vaillancourt LV, Boivin V, Charbonneau M, et al. Colorectal cancer cells respond differentially to autophagy inhibition in vivo. Scientific Reports. 2019, 9(1), 11316.

Qi J, Li Q, Xin T, Lu Q, Lin J, et al. MCOLN1/TRPML1 in the lysosome: a promising target for autophagy modulation in diverse diseases. Autophagy. 2024, 20(8), 1712-1722.

Schmiege P, Fine M, Blobel G, Li X. Human TRPML1 channel structures in open and closed conformations. Nature. 2017, 550(7676), 366-370.

Ma Q, Liao H, Xu L, Li Q, Zou J, et al. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin. Chinese Medicine. 2020, 15, 37.

Castaño RN, Kaakoush NO, Goh KL, Fock KM, Mitchell HM. Autophagy in Helicobacter pylori infection and related gastric cancer. Helicobacter. 2015, 20(5), 353-69.

Akbari A, Noorbakhsh VSM, Haeri MS, Fathi Z, Aziziyan F, et al. Autophagy induced by Helicobacter Pylori infection can lead to gastric cancer dormancy, metastasis, and recurrence: new insights. Human Cell. 2024, 37(1), 139-153.

Alzahrani S, Lina TT, Gonzalez J, Pinchuk IV, Beswick EJ, et al. Effect of Helicobacter pylori on gastric epithelial cells. World Journal of Gastroenterology. 2014, 20(36), 12767-80.

Zuo W, Yang H, Li N, Ouyang Y, Xu X, et al. Helicobacter pylori infection activates Wnt/β-catenin pathway to promote the occurrence of gastritis by upregulating ASCL1 and AQP5. Cell Death Discovery. 2022, 8(1), 257.

Igarashi Y, Sasada T. Cancer vaccines: toward the next breakthrough in cancer immunotherapy. Journal of Immunology Research. 2020, 5825401.

Yi C, Chen L, Lin Z, Liu L, Shao W, et al. Lenvatinib targets FGF receptor 4 to enhance antitumor immune response of anti-programmed cell death‐1 in HCC. Hepatology. 2021, 74(5), 2544-2560.

Li A, Shuai X, Jia Z, Li H, Liang X, et al. Ganoderma lucidum polysaccharide extract inhibits hepatocellular carcinoma growth by downregulating regulatory T cells accumulation and function by inducing microRNA-125b. Journal of Translational Medicine. 2015, 13, 100.

Hirano S, Zhou Q, Furuyama A, Kanno S. Differential regulation of IL-1β and IL-6 release in murine macrophages. Inflammation. 2017, 40, 1933-1943.

Liu Y, Jiao F, Qiu Y, Li W, Qu Y, et al. Immunostimulatory properties and enhanced TNF-α mediated cellular immunity for tumor therapy by C60 (OH) 20 nanoparticles. Nanotechnology. 2009, 20(41), 415102.

Xia QH, Lu CT, Tong MQ, Yue M, Chen R, et al. Ganoderma lucidum polysaccharides enhance the abscopal effect of photothermal therapy in hepatoma-bearing mice through immunomodulatory, anti-proliferative, pro-apoptotic and anti-angiogenic. Frontiers in Pharmacology. 2021, 12, 648708.

Guo C, Guo D, Fang L, Sang T, Wu J, et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon. Carbohydrate Polymers. 2021, 267, 118231.

Durmus S, Valk VM, Teunissen SF, Song JY, Wagenaar E, et al. ABC transporters Mdr1a/1b, Bcrp1, Mrp2 and Mrp3 determine the sensitivity to PhIP/DSS-induced colon carcinogenesis and inflammation. Arch Toxicol. 2019, 93(3), 775-790.

Chen Y, Fan W, Zhao Y, Liu M, Hu L, et al. Progress in the Regulation of Immune Cells in the Tumor Microenvironment by Bioactive Compounds of Traditional Chinese Medicine. Molecules. 2024, 29(10), 2374.

Zhang JP, Zheng L, Wang JH, Magnusson KE, Liu X. Lipid extract from completely sporoderm‐broken germinating Ganoderma sinensis spores elicits potent antitumor immune responses in human macrophages. Phytotherapy Research. 2009, 23(6), 844-50.

Que Z, Zou F, Zhang A, Zheng Y, Bi L, et al. Ganoderic acid Me induces the apoptosis of competent T cells and increases the proportion of Treg cells through enhancing the expression and activation of indoleamine 2, 3-dioxygenase in mouse lewis lung cancer cells. International Immunopharmacology. 2014, 23(1), 192-204.

Feng L, Yuan L, Du M, Chen Y, Zhang MH, et al. Anti-lung cancer activity through enhancement of immunomodulation and induction of cell apoptosis of total triterpenes extracted from Ganoderma luncidum (Leyss. ex Fr.) Karst. Molecules. 2013, 18(8), 9966-81.

Kuo MC, Weng CY, Ha CL, Wu MJ. Ganoderma lucidum mycelia enhance innate immunity by activating NF-κB. Journal of Ethnopharmacology. 2006, 103(2), 217-22.

Yu Q, Nie SP, Wang JQ, Yin PF, Huang DF, et al. Toll-like receptor 4-mediated ROS signaling pathway involved in Ganoderma atrum polysaccharide-induced tumor necrosis factor-α secretion during macrophage activation. Food and Chemical Toxicology. 2014, 66, 14-22.

Sun LX, Lin ZB, Duan XS, Lu J, Ge ZH, et al. Ganoderma lucidum polysaccharides antagonize the suppression on lymphocytes induced by culture supernatants of B16F10 melanoma cells. Journal of Pharmacy and Pharmacology. 2011, 63(5), 725-35.

Shen J, Park HS, Xia YM, Kim GS, Cui SW. The polysaccharides from fermented Ganoderma lucidum mycelia induced miRNAs regulation in suppressed HepG2 cells. Carbohydrate Polymers. 2014, 103, 319-24.

Downloads

Published

2025-01-01

How to Cite

Sharma, K. K., Gupta, S., & Bisen , P. S. (2025). Enhancing Gastrointеstinal (GI) Cancer Therapies with Ganoderma Lucidum: A Review of Mechanisms and Efficacy. Journal of Cancer Biomoleculars and Therapeutics, 2(1), 15–44. https://doi.org/10.62382/jcbt.v2i1.28

Issue

Section

Articles