Noncoding RNAs: Key Modulators of the Hippo Pathway in Hepatocellular Carcinoma Progression

Authors

  • Farzad Sadri Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
  • Zohreh Rezaei Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran

DOI:

https://doi.org/10.62382/jcbt.v2i1.36

Keywords:

Hippo signaling, Hepatocellular carcinoma, Noncoding RNAs, Regulation, Therapeutic targets

Abstract

The Hippo signaling system plays a vital role in controlling cell proliferation, apoptosis, and organ size. Disruption of this pathway strongly correlates with the growth and progression of hepatocellular carcinoma (HCC). Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), play a crucial role in regulating Hippo signaling and have a significant impact on different aspects of liver tumor development. This paper thoroughly investigates the functions of ncRNAs in regulating the Hippo pathway, specifically in liver cancer. We examine how certain miRNAs and lncRNAs engage with Hippo signaling components, influencing cellular processes like growth regulation, programmed cell death, the spread of cancer cells, and resistance to chemotherapy. Developing an understanding of these interactions offers valuable knowledge about the intricate regulatory networks that control liver cancer and identifies possible targets for therapeutic intervention. Our study shows how important it is for ncRNA to control Hippo signaling in liver cancer. It also suggests possible directions for future research that focuses on creating ncRNA-based diagnostic and therapeutic methods.

Downloads

Download data is not yet available.

References

Shi L, Shang X, Nie K, Lin Z, Zheng M, et al. Identification of potential crucial genes associated with the pathogenesis and prognosis of liver hepatocellular carcinoma. Journal of Clinical Pathology. 2021, 74(8), 504-512.

Fu XT, Qie JB, Chen JF, Gao Z, Li XG, et al. Inhibition of SIRT1 relieves hepatocarcinogenesis via alleviating autophagy and inflammation. International Journal of Biological Macromolecules. 2024, 278(Pt 1), 134120.

Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2020, 1873(1), 188314.

Carroll HK, Duffy AG, O'Farrelly C. Liver immunology, immunotherapy, and liver cancers: Time for a rethink? Seminars in Liver Disease. 2022, 42(2), 212-224.

Luo J, Huang Z, Wang M, Li T, Huang J. Prognostic role of multiparameter MRI and radiomics in progression of advanced unresectable hepatocellular carcinoma following combined transcatheter arterial chemoembolization and lenvatinib therapy. BMC Gastroenterology. 2022, 22(1), 108.

Liu Y, Yang H, Li T, Zhang N. Immunotherapy in liver cancer: overcoming the tolerogenic liver microenvironment. Frontiers in Immunology. 2024, 15, 1460282.

Wang J, Peng Y, Jing S, Han L, Li T, et al. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+. BMC Cancer. 2023, 23(1), 1060.

Torres-Hernandez A, Wang W, Nikiforov Y, Tejada K, Torres L, et al. Targeting SYK signaling in myeloid cells protects against liver fibrosis and hepatocarcinogenesis. Oncogene. 2019, 38(23), 4512-4526.

Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nature Reviews Drug Discovery. 2020, 19(7), 480-494.

Driskill JH, Pan D. The Hippo pathway in liver homeostasis and pathophysiology. Annual Review of Pathology. 2021, 16(1), 299-322.

Su Q, Hua F, Xiao W, Liu B, Wang D, et al. Investigation of Hippo pathway-related prognostic lncRNAs and molecular subtypes in liver hepatocellular carcinoma. Scientific Reports. 2023, 13(1), 4521.

Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Advances in Experimental Medicine and Biology. 2016, 937, 3-17.

Ghidini M, Braconi C. Non-coding RNAs in primary liver cancer. Frontiers in Medicine. 2015, 2, 36.

Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiological Reviews. 2016, 96(4), 1297-1325.

Hosseini SF, Javanshir-giv S, Soleimani H, Mollaei H, Sadri F, et al. The importance of hsa-miR-28 in human malignancies. Biomedicine & Pharmacotherapy. 2023, 161, 114453.

Chamani E, Sargolzaei J, Tavakoli T, Rezaei Z. microRNAs: Novel Markers in Diagnostics and Therapeutics of Celiac Disease. DNA and Cell Biology. 2019, 38(7), 708-717.

Bian EB, Xiong ZG, Li J. New advances of lncRNAs in liver fibrosis, with specific focus on lncRNA–miRNA interactions. Journal of Cellular Physiology. 2019, 234(3), 2194-2203.

Zhao Y, Wu J, Liangpunsakul S, Wang L. Long non-coding RNA in liver metabolism and disease: Current status. Liver Research. 2017, 1(3), 163-167.

Wang P, Zhang Y, Deng L, Qu Z, Guo P, et al. The function and regulation network mechanism of circRNA in liver diseases. Cancer Cell International. 2022, 22(1), 141.

Chien Y, Tsai PH, Lai YH, Lu KH, Liu CY, et al. CircularRNA as novel biomarkers in liver diseases. Journal of the Chinese Medical Association. 2020, 83(1), 15-17.

Wang Y, Zhang J, Yang Y, Liu Z, Sun S, et al. Circular RNAs in human diseases. MedComm. 2024, 5(9), e699.

Zeng X, Yuan X, Cai Q, Tang C, Gao J. Circular RNA as an epigenetic regulator in chronic liver diseases. Cells. 2021, 10(8), 1945.

Yao T, Chen Q, Fu L, Guo J. Circular RNAs: biogenesis, properties, roles, and their relationships with liver diseases. Hepatology Research. 2017, 47(6), 497-504.

Chen L, Shan G. CircRNA in cancer: fundamental mechanism and clinical potential. Cancer Letters. 2021, 505, 49-57.

Jiang X, Lu Y, Xie S, Chen Y, Liu X, et al. miR-624 accelerates the growth of liver cancer cells by inhibiting EMC3. Noncoding RNA Research. 2023, 8(4), 641-644.

Zhang R, Zhan Y, Lang Z, Li Y, Zhang W, et al. LncRNA-SNHG5 mediates activation of hepatic stellate cells by regulating NF2 and Hippo pathway. Communications Biology. 2024, 7(1), 266.

Louis C, Coulouarn C. One stone, two birds: circACTN4, a nexus for a coordinated activation of Hippo and Wnt/β-catenin pathways in cholangiocarcinoma. Journal of Hepatology. 2022, 76(1), 8-10.

Li J, Xue J, Ling M, Sun J, Xiao T, et al. MicroRNA-15b in extracellular vesicles from arsenite-treated macrophages promotes the progression of hepatocellular carcinomas by blocking the LATS1-mediated Hippo pathway. Cancer Letters. 2021, 497, 137-153.

Oka T, Mazack V, Sudol M. Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). Journal of Biological Chemistry. 2008, 283(41), 27534-27546.

Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. Journal of Biological Chemistry. 2009, 284(20), 13355-13362.

Sadri F, Hosseini SF, Rezaei Z, Fereidouni M. Hippo-YAP/TAZ signaling in breast cancer: Reciprocal regulation of microRNAs and implications in precision medicine. Genes & Diseases. 2024, 11(2), 760-771.

Zhao B, Wei X, Li W, Udan RS, Yang Q, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes & Development. 2007, 21(21), 2747-2761.

Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes & Development. 2010, 24(1), 72-85.

Moon YA, Shah NA, Mohapatra S, Warrington JA, Horton JD. Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. Journal of Biological Chemistry. 2001, 276(48), 45358-45366.

Li P, Silvis MR, Honaker Y, Lien WH, Arron ST, et al. αE-catenin inhibits a Src–YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Genes & Development. 2016, 30(7), 798-811.

Nguyen-Lefebvre AT, Selzner N, Wrana JL, Bhat M. The hippo pathway: A master regulator of liver metabolism, regeneration, and disease. The FASEB Journal. 2021, 35(5), e21570.

Zheng Y, Pan D. The Hippo signaling pathway in development and disease. Developmental Cell. 2019, 50(3), 264-282.

Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase. Journal of Biological Chemistry. 2010, 285(48), 37159-37169.

Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 2006, 125(7), 1253-1267.

Dong J, Feldmann G, Huang J, Wu S, Zhang N, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007, 130(6), 1120-1133.

Hagenbeek TJ, Webster JD, Kljavin NM, Chang MT, Pham T, et al. The Hippo pathway effector TAZ induces TEAD-dependent liver inflammation and tumors. Science Signaling. 2018, 11(547), eaaj1757.

Yimlamai D, Fowl BH, Camargo FD. Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer. Journal of Hepatology. 2015, 63(6), 1491-1501.

Tao J, Calvisi DF, Ranganathan S, Cigliano A, Zhou L, et al. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology. 2014, 147(3), 690-701.

Zhang J, Liu P, Tao J, Wang P, Zhang Y, et al. TEA domain transcription factor 4 is the major mediator of Yes-associated protein oncogenic activity in mouse and human hepatoblastoma. The American Journal of Pathology. 2019, 189(5), 1077-1090.

Smith JL, Rodríguez TC, Mou H, Kwan SY, Pratt H, et al. YAP1 withdrawal in hepatoblastoma drives therapeutic differentiation of tumor cells to functional hepatocyte‐like cells. Hepatology (Baltimore, Md.). 2021, 73(3), 1011-1027.

Tomlinson GE, Kappler R. Genetics and epigenetics of hepatoblastoma. Pediatric Blood & Cancer. 2012, 59(5), 785-792.

Cai J, Maitra A, Anders RA, Taketo MM, Pan D. β-Catenin destruction complex-independent regulation of Hippo–YAP signaling by APC in intestinal tumorigenesis. Genes & Development. 2015, 29(14), 1493-1506.

Tanas MR, Sboner A, Oliveira AM, Erickson-Johnson MR, Hespelt J, et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Science Translational Medicine. 2011, 3(98), 98ra82.

Tanas MR, Ma S, Jadaan FO, Ng CKY, Weigelt B, et al. Mechanism of action of a WWTR1 (TAZ)-CAMTA1 fusion oncoprotein. Oncogene. 2016, 35(7), 929-938.

Yuan WC, Pepe-Mooney B, Galli GG, Dill MT, Huang HT, et al. NUAK2 is a critical YAP target in liver cancer. Nature Communications. 2018, 9(1), 4834.

Zhao YL, Yang XL. The H ippo pathway in chemotherapeutic drug resistance. International Journal of Cancer. 2015, 137(12), 2767-2773.

Sohn BH, Shim JJ, Kim SB, Jang KY, Kim SM, et al. Inactivation of Hippo pathway is significantly associated with poor prognosis in hepatocellular carcinoma. Clinical Cancer Research. 2016, 22(5), 1256-1264.

Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, et al. Yes‐associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2009, 115(19), 4576-4585.

Sia D, Hoshida Y, Villanueva A, S. Roayaie, J. Ferrer, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology. 2013, 144(4), 829-840.

Zhou D, Conrad C, Xia F, Park JS, Payer B, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 2009, 16(5), 425-438.

Zhang N, Zhao Z, Long J, Li H, Zhang B, et al. Molecular alterations of the NF2 gene in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Oncology Reports. 2017, 38(6), 3650-3658.

Chang L, Azzolin L, Di Biagio D, Zanconato F, Battilana G, et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature. 2018, 563(7730), 265-269.

Hill MA, Alexander WB, Guo B, Kato Y, Patra K, et al. Kras and Tp53 mutations cause cholangiocyte-and hepatocyte-derived cholangiocarcinoma. Cancer Research. 2018, 78(16), 4445-4451.

Ziosi M, Baena-López LA, Grifoni D, Froldi F, Pession A, et al. dMyc functions downstream of Yorkie to promote the supercompetitive behavior of hippo pathway mutant cells. PLoS Genetics. 2010, 6(9), e1001140.

Neto-Silva PM, De Beco S, Johnston LA. Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Developmental Cell. 2010, 19(4), 507-520.

Szymanski M, Barciszewska MZ, Zywicki M, Barciszewski J. Noncoding RNA transcripts. Journal of Applied Genetics. 2003, 44(1), 1-20.

Iaconetti C, Gareri C, Polimeni A, Indolfi C. Non-coding RNAs: the “dark matter” of cardiovascular pathophysiology. International Journal of Molecular Sciences. 2013, 14(10), 19987-20018.

Liu C, Wu Y, Ma J. Interaction of non-coding RNAs and Hippo signaling: Implications for tumorigenesis. Cancer Letters. 2020, 493, 207-216.

Wong CM, Tsang FHC, Ng IOL. Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nature Reviews Gastroenterology & Hepatology. 2018, 15(3), 137-151.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011, 144(5), 646-674.

Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer. 2015, 15(6), 321-333.

Giordano S, Columbano A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology (Baltimore, Md.). 2013, 57(2), 840-847.

Liu AM, Poon RT, Luk JM. MicroRNA-375 targets Hippo-signaling effector YAP in liver cancer and inhibits tumor properties. Biochemical and Biophysical Research Communications. 2010, 394(3), 623-7.

Perra A, Kowalik MK, Ghiso E, Ledda-Columbano GM, Di Tommaso L, et al. YAP activation is an early event and a potential therapeutic target in liver cancer development. Journal of Hepatology. 2014, 61(5), 1088-96.

Dinh TA, Jewell ML, Kanke M, Francisco A, Sritharan R, et al. MicroRNA-375 Suppresses the Growth and Invasion of Fibrolamellar Carcinoma. Cellular and Molecular Gastroenterology and Hepatology. 2019, 7(4), 803-817.

Yu K, Li H, Jiang Z, Hsu HJ, Hsu HC, et al. miR‑375/Yes‑associated protein axis regulates IL‑6 and TGF‑β expression, which is involved in the cisplatin‑induced resistance of liver cancer cells. Oncology Reports. 2021, 46(2), 162.

Ren K, Li T, Zhang W, Ren J, Li Z, et al. miR-199a-3p inhibits cell proliferation and induces apoptosis by targeting YAP1, suppressing Jagged1-Notch signaling in human hepatocellular carcinoma. Journal of Biomedical Science. 2016, 23(1), 79.

Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, et al. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nature Cell Biology. 2012, 14(12), 1322-9.

Ruan T, He X, Yu J, Hang Z. MicroRNA-186 targets Yes-associated protein 1 to inhibit Hippo signaling and tumorigenesis in hepatocellular carcinoma. Oncology Letters. 2016, 11(4), 2941-2945.

Chen M, Wu L, Tu J, Zhao Z, Fan X, et al. miR-590-5p suppresses hepatocellular carcinoma chemoresistance by targeting YAP1 expression. EBioMedicine. 2018, 35, 142-154.

Wang Y, Cui M, Sun BD, Liu FB, Zhang XD, et al. MiR-506 suppresses proliferation of hepatoma cells through targeting YAP mRNA 3'UTR. Acta Pharmacologica Sinica. 2014, 35(9), 1207-14.

Lei CJ, Li L, Gao X, Zhang J, Pan QY, et al. Hsa-miR-132 inhibits proliferation of hepatic carcinoma cells by targeting YAP. Cell Biochemistry and Function. 2015, 33(5), 326-33.

Jung KH, McCarthy RL, Zhou C, Uprety N, Barton MC, et al. MicroRNA Regulates Hepatocytic Differentiation of Progenitor Cells by Targeting YAP1. Stem Cells (Dayton, Ohio). 2016, 34(5), 1284-96.

Hong Y, Ye M, Wang F, Fang J, Wang C, et al. MiR-21-3p Promotes Hepatocellular Carcinoma Progression via SMAD7/YAP1 Regulation. Frontiers in Oncology. 2021, 11, 642030.

Zhang H, Liu H, Bi H. MicroRNA-345 inhibits hepatocellular carcinoma metastasis by inhibiting YAP1. Oncology Reports. 2017, 38(2), 843-849.

Higashi T, Hayashi H, Ishimoto T, Takeyama H, Kaida T, et al. miR-9-3p plays a tumour-suppressor role by targeting TAZ (WWTR1) in hepatocellular carcinoma cells. British Journal of Cancer. 2015, 113(2), 252-8.

Liu P, Zhang H, Liang X, Ma H, Luan F, et al. HBV preS2 promotes the expression of TAZ via miRNA-338-3p to enhance the tumorigenesis of hepatocellular carcinoma. Oncotarget. 2015, 6(30), 29048-59.

Li J, Fang L, Yu W, Wang Y. MicroRNA-125b suppresses the migration and invasion of hepatocellular carcinoma cells by targeting transcriptional coactivator with PDZ-binding motif. Oncology Letters. 2015, 9(4), 1971-1975.

Han LL, Yin XR, Zhang SQ. miR-103 promotes the metastasis and EMT of hepatocellular carcinoma by directly inhibiting LATS2. International Journal of Oncology. 2018, 53(6), 2433-2444.

Wu H, Zhang W, Wu Z, Liu Y, Shi Y, et al. miR-29c-3p regulates DNMT3B and LATS1 methylation to inhibit tumor progression in hepatocellular carcinoma. Cell Death & Disease. 2019, 10(2), 48.

Guan L, Li T, Ai N, Wang W, He B, et al. MEIS2C and MEIS2D promote tumor progression via Wnt/β-catenin and hippo/YAP signaling in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research: CR. 2019, 38(1), 417.

Han LL, Yin XR, Zhang SQ. miR-650 Promotes the Metastasis and Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma by Directly Inhibiting LATS2 Expression. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology. 2018, 51(3), 1179-1192.

Ma G, Chen J, Wei T, Wang J, Chen W. Inhibiting roles of FOXA2 in liver cancer cell migration and invasion by transcriptionally suppressing microRNA-103a-3p and activating the GREM2/LATS2/YAP axis. Cytotechnology. 2021, 73(4), 523-537.

Yang X, Yu J, Yin J, Xiang Q, Tang H, et al. MiR-195 regulates cell apoptosis of human hepatocellular carcinoma cells by targeting LATS2. Die Pharmazie. 2012, 67(7), 645-51.

Xin Y, Yang X, Xiao J, Zhao W, Li Y, et al. MiR-135b promotes HCC tumorigenesis through a positive-feedback loop. Biochemical and Biophysical Research Communications. 2020, 530(1), 259-265.

Cheng L, Wang H, Han S. MiR-3910 Promotes the Growth and Migration of Cancer Cells in the Progression of Hepatocellular Carcinoma. Digestive Disease and Sciences. 2017, 62(10), 2812-2820.

Kim Y, Kim W, Song Y, Kim JR, Cho K, et al. Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proceedings of the National Academy of Sciences of the United States of America. 2017, 114(18), 4691-4696.

Pu J, Xu Z, Nian J, Fang Q, Yang M, et al. M2 macrophage-derived extracellular vesicles facilitate CD8+T cell exhaustion in hepatocellular carcinoma via the miR-21-5p/YOD1/YAP/β-catenin pathway. Cell Death Discovery. 2021, 7(1), 182.

Lu X, Yang C, Hu Y, Xu J, Shi C, et al. Upregulation of miR-1254 promotes Hepatocellular Carcinoma Cell Proliferation, Migration, and Invasion via Inactivation of the Hippo-YAP signaling pathway by decreasing PAX5. Journal of Cancer. 2021, 12(3), 771-789.

Lin H, Peng J, Zhu T, Xiong M, Zhang R, et al. Exosomal miR-4800-3p Aggravates the Progression of Hepatocellular Carcinoma via Regulating the Hippo Signaling Pathway by Targeting STK25. Frontiers in Oncology. 2022, 12, 759864.

Shen S, Lin Y, Yuan X, Shen L, Chen J, et al. Biomarker MicroRNAs for Diagnosis, Prognosis and Treatment of Hepatocellular Carcinoma: A Functional Survey and Comparison. Scientific Reports. 2016, 6, 38311.

Neuberger J, Cain O. The need for alternatives to liver biopsies: non-invasive analytics and diagnostics. Hepatic Medicine: Evidence and Research. 2021, 13, 59-69.

Cheng G. Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Advanced Drug Delivery Reviews. 2015, 81, 75-93.

Lee NH, Kim SJ, Hyun J. MicroRNAs Regulating Hippo-YAP Signaling in Liver Cancer. Biomedicines. 2021, 9(4), 347.

Chen X, Ba Y, Ma L, Cai X, Yin Y, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research. 2008, 18(10), 997-1006.

Kosaka N, Iguchi H, Ochiya Y. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Science. 2010, 101(10), 2087-92.

Bie B, Sun J, Li J, Guo Y, Jiang W, et al. Baicalein, a Natural Anti-Cancer Compound, Alters MicroRNA Expression Profiles in Bel-7402 Human Hepatocellular Carcinoma Cells. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology. 2017, 41(4), 1519-1531.

Wang C, Zhu X, Feng W, Yu Y, Jeong K, et al. Verteporfin inhibits YAP function through up-regulating 14-3-3σ sequestering YAP in the cytoplasm. American Journal of Cancer Research. 2016, 6(1), 27-37.

O'Neill CP, Dwyer RM. Nanoparticle-Based Delivery of Tumor Suppressor microRNA for Cancer Therapy. Cells. 2020, 9(2), 521.

Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. British Journal of Cancer. 2020, 122(11), 1630-1637.

Jin L, He Y, Tang S, Huang S. LncRNA GHET1 predicts poor prognosis in hepatocellular carcinoma and promotes cell proliferation by silencing KLF2. Journal of Cellular Physiology. 2018, 233(6), 4726-4734.

Wang J, Wang H, Zhang Y, Zhen N, Zhang L, et al. Mutual inhibition between YAP and SRSF1 maintains long non-coding RNA, Malat1-induced tumourigenesis in liver cancer. Cell Signal. 2014, 26(5), 1048-59.

He X, Chen J, Zhou J, Mao A, Xu W, et al. LncRNA-EWSAT1 promotes hepatocellular carcinoma metastasis via activation of the Src-YAP signaling axis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 2022, 36(12), e22663.

Zhu P, Wang Y, Wu J, Huang G, Liu B, et al. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nature Communications. 2016, 7, 13608.

Lan T, Yan X, Li Z, Xu X, Mao Q, et al. Long non-coding RNA PVT1 serves as a competing endogenous RNA for miR-186-5p to promote the tumorigenesis and metastasis of hepatocellular carcinoma. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine. 2017, 39(6), 1010428317705338.

Yu W, Qiao Y, Tang X, Ma L, Wang Y, et al. Tumor suppressor long non-coding RNA, MT1DP is negatively regulated by YAP and Runx2 to inhibit FoxA1 in liver cancer cells. Cell Signal. 2014, 26(12), 2961-8.

Wang CZ, Yan GX, Dong DS, Xin H, Liu ZY. LncRNA-ATB promotes autophagy by activating Yes-associated protein and inducing autophagy-related protein 5 expression in hepatocellular carcinoma. World Journal of Gastroenterology. 2019, 25(35), 5310-5322.

Jia Y, Jin H, Gao L, Yang X, Wang F, et al. A novel lncRNA PLK4 up-regulated by talazoparib represses hepatocellular carcinoma progression by promoting YAP-mediated cell senescence. Journal of Cellular and Molecular Medicine. 2020, 24(9), 5304-5316.

Ma D, Gao X, Liu Z, Lu X, Ju H, et al. Exosome-transferred long non-coding RNA ASMTL-AS1 contributes to malignant phenotypes in residual hepatocellular carcinoma after insufficient radiofrequency ablation. Cell Proliferation. 2020, 53(9), e12795.

Guo C, Zhou S, Yi W, Yang P, Li O, et al. Long non-coding RNA muskelin 1 antisense RNA (MKLN1-AS) is a potential diagnostic and prognostic biomarker and therapeutic target for hepatocellular carcinoma. Experimental and Molecular Pathology. 2021, 120, 104638.

Ni W, Zhang Y, Zhan Z, Ye F, Liang Y, et al. A novel lncRNA uc.134 represses hepatocellular carcinoma progression by inhibiting CUL4A-mediated ubiquitination of LATS1. Journal of Hematology & Oncology. 2017, 10(1), 91.

Xie SC, Zhang JQ, Jiang XL, Hua XY, Xie SW, et al. LncRNA CRNDE facilitates epigenetic suppression of CELF2 and LATS2 to promote proliferation, migration and chemoresistance in hepatocellular carcinoma. Cell Death & Disease. 2020, 11(8), 676.

Zeng Y, Xu Q, Xu N. Long non-coding RNA LOC107985656 represses the proliferation of hepatocellular carcinoma cells through activation of the tumor-suppressive Hippo pathway. Bioengineered. 2021, 12(1), 7964-7974.

Yu J, Hong JF, Kang J, Liao LH, Li CD. Promotion of LncRNA HOXA11-AS on the proliferation of hepatocellular carcinoma by regulating the expression of LATS1. European Review for Medical and Pharmacological Sciences. 2017, 21(15), 3402-3411.

Lv B, Zhang L, Miao R, Xiang X, Dong S, et al. Comprehensive analysis and experimental verification of LINC01314 as a tumor suppressor in hepatoblastoma. Biomedicine & Pharmacotherapy. 2018, 98, 783-792.

Zhang Y, Dang YW, Wang X, Yang X, Zhang R, et al. Comprehensive analysis of long non-coding RNA PVT1 gene interaction regulatory network in hepatocellular carcinoma using gene microarray and bioinformatics. American Journal of Translational Research. 2017, 9(9), 3904-3917.

Qu X, Zhang L, Li S, Li T, Zhao X, et al. m(6)A-Related Angiogenic Genes to Construct Prognostic Signature, Reveal Immune and Oxidative Stress Landscape, and Screen Drugs in Hepatocellular Carcinoma. Oxidative Medicine and Cellular Longevity. 2022, 2022, 8301888.

Hao X, Zhang Y, Shi X, Liu H, Zheng Z, et al. CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3ζ. Journal of Experimental & Clinical Cancer Research: CR. 2022, 41(1), 281.

Chen Q, Wang H, Li Z, Li F, Liang L, et al. Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. Journal of Hepatology. 2022, 76(1), 135-147.

Gao P, Yang Y, Li X, Zhao Q, Liu Y, et al. Circular RNA hsa_circ_0098181 inhibits metastasis in hepatocellular carcinoma by activating the Hippo signaling pathway via interaction with eEF2. Annals of Hepatology. 2023, 28(5), 101124.

Zhang X, Xu Y, Qian Z, Zheng W, Wu Q, et al. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death & Disease. 2018, 9(11), 1091.

Huang X, Zhou LZ, Feng WJ, Liu YQ, Chen M, et al. Circ ubiquitin-like-containing plant homeodomain and RING finger domains protein 1 increases the stability of G9a and ubiquitin-like-containing plant homeodomain and RING finger domains protein 1 messenger RNA through recruiting eukaryotic translation initiation factor 4A3, transcriptionally inhibiting PDZ and homeobox protein domain protein 1, and promotes the metastasis of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology. 2024, 39(3), 596-607.

Liang Q, Wang J, Pei Y, Yu X, Liu Q, et al. CircRNA HIPK3 facilitates the metastasis and migration of hepatocellular carcinoma through regulation of miR-381-3p-YAP axis. arxiv. 2023.

Chen Y, Ling Z, Cai X, Xu Y, Lv Z, et al. Activation of YAP1 by N6-Methyladenosine-Modified circCPSF6 Drives Malignancy in Hepatocellular Carcinoma. Cancer Research. 2022, 82(4), 599-614.

Xue C, Gu X, Bao Z, Su Y, Lu, et al. The mechanism underlying the ncRNA dysregulation pattern in hepatocellular carcinoma and its tumor microenvironment. Frontiers in Immunology. 2022, 13, 847728.

Huang Q, Zhong X, Li J, Hu R, Yi J, et al. Exosomal ncRNAs: Multifunctional contributors to the immunosuppressive tumor microenvironment of hepatocellular carcinoma. Biomedicine & Pharmacotherapy. 2024, 173, 116409.

Zhang Y, Ding X, Zhang X, Li Y, Xu R, et al. Unveiling the contribution of tumor-associated macrophages in driving epithelial-mesenchymal transition: a review of mechanisms and therapeutic Strategies. Frontiers in Pharmacology. 2024, 15, 1404687.

Lv Y, Wang Z, Yuan K, Zeng Y. Noncoding RNAs as sensors of tumor microenvironmental stress. Journal of Experimental & Clinical Cancer Research. 2022, 41(1), 224.

Lv Y, Wang Z, Yuan K. Role of Noncoding RNAs in the Tumor Immune Microenvironment of Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology. 2023, 11(3), 682.

Wang Y, Wang B, Xiao S, Li Y, Chen Q. miR-125a/b inhibits tumor-associated macrophages mediated in cancer stem cells of hepatocellular carcinoma by targeting CD90. Journal of Cellular Biochemistry. 2019, 120(3), 3046-3055.

Hua S, Liu C, Liu L, Wu D. miR-142-3p inhibits aerobic glycolysis and cell proliferation in hepatocellular carcinoma via targeting LDHA. Biochemical and Biophysical Research Communications. 2018, 496(3), 947-954.

Ji WB, Liu X, Luo Y, Zhang WZ. High expression of miR-15b predicts poor prognosis for hepatocellular carcinoma after curative hepatectomy. Oncology Reports. 2016, 36(4), 1901-8.

Song S, Qiu X. LncRNA miR503HG inhibits epithelial-mesenchymal transition and angiogenesis in hepatocellular carcinoma by enhancing PDCD4 via regulation of miR-15b. Digestive and Liver Disease: Official Journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2021, 53(1), 107-116.

Ye Y, Guo J, Xiao P, Ning J, Zhang R, et al. Macrophages-induced long noncoding RNA H19 up-regulation triggers and activates the miR-193b/MAPK1 axis and promotes cell aggressiveness in hepatocellular carcinoma. Cancer Letters. 2020, 469, 310-322.

Hu ZQ, Zhou SL, Li J, Zhou ZJ, Wang PC, et al. Circular RNA Sequencing Identifies CircASAP1 as a Key Regulator in Hepatocellular Carcinoma Metastasis. Hepatology (Baltimore, Md.). 2020, 72(3), 906-922.

Xiang Y, Yang Y, Lin C, Wu J, Zhang X. MiR-23a-3p promoted G1/S cell cycle transition by targeting protocadherin17 in hepatocellular carcinoma. Journal of Physiology and Biochemistry. 2020, 76(1), 123-134.

Chai ZT, Zhu XD, Ao JY, Wang WQ, Gao DM, et al. microRNA-26a suppresses recruitment of macrophages by down-regulating macrophage colony-stimulating factor expression through the PI3K/Akt pathway in hepatocellular carcinoma. Journal of Hematology & Oncology. 2015, 8, 1-11.

Zhang JG, Shi Y, Hong DF, Song M, Huang D, et al. MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/β-catenin pathway. Scientific Reports. 2015, 5(1), 8087.

Hou ZH, Xu XW, Fu XY, Zhou LD, Liu SP, et al. Long non-coding RNA MALAT1 promotes angiogenesis and immunosuppressive properties of HCC cells by sponging miR-140. American Journal of Physiology-Cell Physiology. 2020, 318(3), C649-C663.

Downloads

Published

2025-01-01

How to Cite

Sadri, F., & Rezaei, Z. (2025). Noncoding RNAs: Key Modulators of the Hippo Pathway in Hepatocellular Carcinoma Progression. Journal of Cancer Biomoleculars and Therapeutics, 2(1), 73–88. https://doi.org/10.62382/jcbt.v2i1.36

Issue

Section

Articles