Decrypting the Crosstalk Mechanisms Between cGAS-STING and TBK1 Signaling Pathways in Cancer Immunotherapy: A Comprehensive Review
DOI:
https://doi.org/10.62382/jcbt.v2i1.42Keywords:
cGAS-STING, TBK1, Tumor Microenvironment, Immunity, Cancer ImmunotherapyAbstract
In the tumor microenvironment, the cytosolic DNA sensing, cyclic GMP-AMP synthase- stimulator of interferon genes (cGAS-STING) pathway is a crucial regulator of immune response. The cGAS of innate immunity recognizes cytoplasmic DNA by catalyzing cyclic GMP-AMP (cGAMP), which subsequently activates the STING pathway. STING activation leads to the phosphorylation of TANK-binding kinase 1 (TBK1) and recruitment of key transcription factor IRF3, notably to initiate the production of pro-inflammatory cytokines and Type I IFNs. This cascade enhances antigen presentation and primes cytotoxic T-cells, leading to the induction of anti-tumor immune response. Specific crosstalk mechanisms, such as TBK1-mediated negative feedback to limit excessive STING activation or its cooperation with NF-κB to balance immune responses, play pivotal roles in shaping tumor immunity. Harnessing this axis in cancer immunotherapy has emerged as a promising strategy, offering synergy with immune checkpoint blockade and CAR T-cells therapy. Fine-tuning activation of this pathway is crucial for balanced immune responses, making cGAS-STING/TBK1 signal transduction a major target for novel cancer therapies. This review elucidates the intricate crosstalk mechanisms of cGAS-STING and TBK1 signal transduction within tumor microenvironment. These may shed insight on cancer therapy options and their pivotal roles in modulating tumor immunity.
Downloads
References
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians. 2024, 74(3), 229-263. DOI: 10.3322/caac.21834
Zhang SS, Xiao XY, Yi YL, Wang XY, Zhu LX, et al. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduction and Targeted Therapy. 2024, 9(1), 149. DOI: 10.1038/s41392-024-01848-7
Paul P, Malakar AK, Chakraborty S. The significance of gene mutations across eight major cancer types. Mutation Research. Reviews in Mutation Research. 2019, 781, 88-99. DOI: 10.1016/j.mrrev.2019.04.004
Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Research. 2020, 30(6), 507-519. DOI: 10.1038/s41422-020-0337-2
Bai RL, Chen NF, Li LY, Cui JW. A brand new era of cancer immunotherapy: breakthroughs and challenges. Chinese Medical Journal. 2021, 134(11), 1267-1275. DOI: 10.1097/CM9.0000000000001490
Naser R, Dilabazian H, Bahr H, Barakat A, El-Sibai M. A guide through conventional and modern cancer treatment modalities: A specific focus on glioblastoma cancer therapy (Review). Oncology Reports. 2022, 48(5), 190. DOI: 10.3892/or.2022.8405
Darvishi M, Tosan F, Nakhaei P, Manjili DA, Kharkouei SA, et al. Recent progress in cancer immunotherapy: Overview of current status and challenges. Pathology, Research and Practice. 2023, 241, 154241. DOI: 10.1016/j.prp.2022.154241
Paludan SR, Pradeu T, Masters SL, Mogensen TH. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nature Reviews. Immunology. 2021, 21(3), 137-150. DOI: 10.1038/s41577-020-0391-5
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, et al. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines (Basel). 2022, 10(9), 1493. DOI: 10.3390/vaccines10091493
Kim SK, Cho SW. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Frontiers in Pharmacology. 2022, 13, 868695. DOI: 10.3389/fphar.2022.868695
de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023, 41(3), 374-403. DOI: 10.1016/j.ccell.2023.02.016
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cellular & Molecular Immunology. 2020, 17(8), 807-821. DOI: 10.1038/s41423-020-0488-6
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, et al. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines. 2024, 12(1), 217. DOI: 10.3390/biomedicines12010217
Roy R, Singh SK, Misra S. Advancements in Cancer Immunotherapies. Vaccines (Basel). 2023, 11(1), 59. DOI: 10.3390/vaccines11010059
Kciuk M, Yahya EB, Mohamed IMM, Rashid S, Iqbal MO, et al. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel). 2023, 15(10), 2721. DOI: 10.3390/cancers15102721
Tan S, Day D, Nicholls SJ, Segelov E. Immune Checkpoint Inhibitor Therapy in Oncology: Current Uses and Future Directions: JACC: CardioOncology State-of-the-Art Review. CardioOncology. 2022, 4(5), 579-597. DOI: 10.1016/j.jaccao.2022.09.004
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews. Immunology. 2020, 20(11), 651-668. DOI: 10.1038/s41577-020-0306-5
Yu L, Liu PD. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduction and Targeted Therapy. 2021, 6(1), 170. DOI: 10.1038/s41392-021-00554-y
Jiang ML, Chen PX, Wang L, Li W, Chen B, et al. cGAS-STING, an important pathway in cancer immunotherapy. Journal of Hematology & Oncology. 2020, 13(1), 81. DOI: 10.1186/s13045-020-00916-z
Tian Z, Zeng Y, Peng Y, Liu J, Wu F. Cancer immunotherapy strategies that target the cGAS-STING pathway. Frontiers in Immunology. 2022, 13, 996663. DOI: 10.3389/fimmu.2022.996663
Chen MT, Yu SB, van der Sluis T, Zwager MC, Schröder CP, et al. cGAS-STING pathway expression correlates with genomic instability and immune cell infiltration in breast cancer. NPJ Breast Cancer. 2024, 10(1), 1. DOI: 10.1038/s41523-023-00609-z
Gan Y, Li XY, Han SZ, Liang Q, Ma XQ, et al. The cGAS/STING Pathway: A Novel Target for Cancer Therapy. Frontiers in Immunology. 2022, 12, 795401. DOI: 10.3389/fimmu.2021.795401
Xiang S, Song SK, Tang HT, Smaill JB, Wang AQ, et al. TANK-binding kinase 1 (TBK1): An emerging therapeutic target for drug discovery. Drug Discovery Today. 2021, 26(10), 2445-2455. DOI: 10.1016/j.drudis.2021.05.016
Runde AP, Mack R, S J PB, Zhang JW. The role of TBK1 in cancer pathogenesis and anticancer immunity. Journal of Experimental & Clinical Cancer Research: CR. 2022, 41(1), 135. DOI: 10.1186/s13046-022-02352-y
Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews. Immunology. 2021, 21(9), 548-569. DOI: 10.1038/s41577-021-00524-z
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiology of Disease. 2024, 202, 106710. DOI: 10.1016/j.nbd.2024.106710
Liu Y, Pu FF. Updated roles of cGAS-STING signaling in autoimmune diseases. Frontiers in Immunology. 2023, 14, 1254915. DOI: 10.3389/fimmu.2023.1254915
Chen RH, Du JM, Zhu H, Ling Q. The role of cGAS-STING signalling in liver diseases. JHEP Reports: Innovation in Hepatology. 2021, 3(5), 100324. DOI: 10.1016/j.jhepr.2021.100324
Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nature reviews. Molecular Cell Biology. 2020, 21(9), 501-521. DOI: 10.1038/s41580-020-0244-x
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, et al. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zoological Research. 2023, 44(1), 183-218. DOI: 10.24272/j.issn.2095-8137.2022.464
Zhang X, Bai XC, Chen ZJ. Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity. 2020, 53(1), 43-53. DOI: 10.1016/j.immuni.2020.05.013
Pu F, Chen F, Liu J, Zhang Z, Shao Z. Immune Regulation of the cGAS-STING Signaling Pathway in the Tumor Microenvironment and Its Clinical Application. OncoTargets and Therapy. 2021, 14, 1501-1516. DOI: 10.2147/OTT.S298958
Kwon J, Bakhoum SF. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. Cancer Discovery. 2020, 10(1), 26-39. DOI: 10.1158/2159-8290.CD-19-0761
Khoo LT, Chen LY. Role of the cGAS-STING pathway in cancer development and oncotherapeutic approaches. EMBO Reports. 2018, 19(12), e46935. DOI: 10.15252/embr.201846935
Pépin G, Gantier MP. cGAS-STING Activation in the Tumor Microenvironment and Its Role in Cancer Immunity. Advances in Experimental Medicine and Biology. 2017, 1024, 175-194. DOI: 10.1007/978-981-10-5987-2_8
Li J, Bakhoum SF. The pleiotropic roles of cGAS-STING signaling in the tumor microenvironment. Journal of Molecular Cell Biology. 2022, 14(4), mjac019. DOI: 10.1093/jmcb/mjac019
Fan XZ, Song XS, Chen WJ, Liang HT, Natatsukasa H, et al. cGAS‐STING signaling in cancer: Regulation and therapeutic targeting. MedComm-Oncology Homepage. 2023, 2(3), e49. DOI: 10.1002/mog2.49
Yu Y, Liu J, Liu C, Liu R, Liu L, et al. Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation. Cells. 2022, 11(19), 3043. DOI: 10.3390/cells11193043
Revach OY, Liu S, Jenkins RW. Targeting TANK-binding kinase 1 (TBK1) in cancer. Expert Opinion on Therapeutic Targets. 2020, 24(11), 1065–1078. DOI: 10.1080/14728222
Marion JD, Roberts CF, Call RJ, Forbes JL, Nelson KT, et al. Mechanism of endogenous regulation of the type I interferon response by suppressor of IκB kinase epsilon (SIKE), a novel substrate of TANK-binding kinase 1 (TBK1). The Journal of Biological Chemistry. 2013, 288(25), 18612-23. DOI: 10.1074/jbc.M112.440859
Alam M, Hasan GM, Hassan MI. A review on the role of TANK-binding kinase 1 signaling in cancer. International Journal of Biological Macromolecules. 2021, 183, 2364-2375. DOI: 10.1016/j.ijbiomac.2021.06.022
Miranda A, Shirley CA, Jenkins RW. Emerging roles of TBK1 in cancer immunobiology. Trends Cancer. 2024, 10(6), 531-540. DOI: 10.1016/j.trecan.2024.02.007
Wang BL, Zhang F, Wu XY, Ji M. TBK1 is paradoxical in tumor development: a focus on the pathway mediating IFN-I expression. Frontiers in Immunology. 2024, 15, 1433321. DOI: 10.3389/fimmu.2024.1433321
Hu LX, Xie HB, Liu XJ, Potjewyd F, James LI, et al. TBK1 Is a Synthetic Lethal Target in Cancer with VHL Loss. Cancer Discovery. 2020, 10(3), 460-475. DOI: 10.1158/2159-8290.CD-19-0837
Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013, 339(6121), 786-91. DOI: 10.1126/science.1232458. Epub 2012 Dec 20
Gao CQ, Chu ZZ, Zhang D, Xiao Y, Zhou XY, et al. Serine/threonine kinase TBK1 promotes cholangiocarcinoma progression via direct regulation of β-catenin. Oncogene. 2023, 42(8), 1492-1507. DOI: 10.1038/s41388-023-02651-4
Samson N, Ablasser A. The cGAS-STING pathway and cancer. Nature Cancer. 2022, 3(12), 1452-1463. DOI: 10.1038/s43018-022-00468-w
Lu Q, Chen Y, Li J, Zhu F, Zheng Z. Crosstalk between cGAS-STING pathway and autophagy in cancer immunity. Frontiers in Immunology. 2023, 14, 1139595. DOI: 10.3389/fimmu.2023.1139595
Joshi B, Joshi JC, Mehta D. Regulation of cGAS Activity and Downstream Signaling. Cells. 2022, 11(18), 2812. DOI: 10.3390/cells11182812
Hoong BYD, Gan YH, Liu H, Chen ES. cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget. 2020, 11(30), 2930-2955. DOI: 10.18632/oncotarget.27673
Li X, Shu C, Yi GH, Chaton CT, Shelton CL, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 2013, 39(6), 1019-31. DOI: 10.1016/j.immuni.2013.10.019
Bai JL, Liu F. The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Diabetes. 2019, 68(6), 1099-1108. DOI: 10.2337/dbi18-0052
Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE, et al. Tumor-Derived cGAMP Triggers a STING-Mediated Interferon Response in Non-tumor Cells to Activate the NK Cell Response. Immunity. 2018, 49(4), 754-763.e4. DOI: 10.1016/j.immuni.2018.09.016
Yu XY, Zhao Z, Jiang ZF. Recent progress on the activation of the cGAS-STING pathway and its regulation by biomolecular condensation. Journal of Molecular Cell Biology. 2022, 14(6), mjac042. DOI: 10.1093/jmcb/mjac042
Wang ZL, Chen N, Li ZY, Xu G, Zhan XY, et al. The Cytosolic DNA-Sensing cGAS-STING Pathway in Liver Diseases. Frontiers in Cell and Developmental Biology. 2021, 9, 717610. DOI: 10.3389/fcell.2021.717610
Mukai K, Konno H, Akiba T, Uemura T, Waguri S, et al. Activation of STING requires palmitoylation at the Golgi. Nature Communications. 2016, 7, 11932. DOI: 10.1038/ncomms11932
Xu Q, Xing J, Wang SJ, Peng HY, Liu YZ. The role of the cGAS-STING pathway in metabolic diseases. Heliyon. 2024, 10(12), e33093. DOI: 10.1016/j.heliyon.2024.e33093
Hussain B, Xie YF, Jabeen U, Lu DF, Yang B, et al. Activation of STING Based on Its Structural Features. Frontiers in Immunology. 2022, 13, 808607. DOI: 10.3389/fimmu.2022.808607
Zhang LL, Wei XB, Wang ZM, Liu PY, Hou YF, et al. NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Reports. 2023, 42(3), 112185. DOI: 10.1016/j.celrep.2023.112185
Du HS, Xu TM, Cui MH. cGAS-STING signaling in cancer immunity and immunotherapy. Biomedicine & Pharmacotherapy. 2021, 133, 110972. DOI: 10.1016/j.biopha.2020.110972
Vashi N, Bakhoum SF. The Evolution of STING Signaling and Its Involvement in Cancer. Trends in Biochemical Sciences. 2021, 46(6), 446-460. DOI: 10.1016/j.tibs.2020.12.010
Wang Y, Luo JW, Alu A, Han XJ, Wei YQ, et al. cGAS-STING pathway in cancer biotherapy. Molecular Cancer. 2020, 19(1), 136. DOI: 10.1186/s12943-020-01247-w
Zhang JW, Yu SH, Peng Q, Wang P, Fang L. Emerging mechanisms and implications of cGAS-STING signaling in cancer immunotherapy strategies. Cancer Biology & Medicine. 2024, 21(1), 45-64. DOI: 10.20892/j.issn.2095-3941.2023.0440
Saeed AFUH, Ruan XL, Guan HX, Su JQ, Ouyang SY. Regulation of cGAS-Mediated Immune Responses and Immunotherapy. Advanced Science. 2020, 7(6), 1902599. DOI: 10.1002/advs.201902599
Zheng JY, Mo JL, Zhu T, Zhuo W, Yi YN, et al. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Molecular Cancer. 2020, 19(1), 133. DOI: 10.1186/s12943-020-01250-1
Su T, Zhang Y, Valerie K, Wang XY, Lin SB, et al. STING activation in cancer immunotherapy. Theranostics. 2019, 9(25), 7759-7771. DOI: 10.7150/thno.37574
Kumar V, Bauer C, Stewart IV JH. Cancer cell-specific cGAS/STING Signaling pathway in the era of advancing cancer cell biology. European Journal of Cell Biology. 2023, 102(3), 151338. DOI: 10.1016/j.ejcb.2023.151338
Pulendran B, S. Arunachalam P, O’Hagan, DT. Emerging concepts in the science of vaccine adjuvants. Nature Reviews. Drug Discovery. 2021, 20(6), 454-475. DOI: 10.1038/s41573-021-00163-y
Kim YJ. STINGing the Tumor's immune evasion mechanism. Oncoimmunology. 2018, 7(4), e1083673. DOI: 10.1080/2162402X.2015.1083673
Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Science Translational Medicine. 2015, 7(283), 283ra52. DOI: 10.1126/scitranslmed.aaa4306
Li AP, Yi M, Qin S, Song YP, Chu Q, et al. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. Journal of Hematology & Oncology. 2019, 12(1), 35. DOI: 10.1186/s13045-019-0721-x
Miao L, Li LX, Huang YX, Delcassian D, Chahal J, et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nature Biotechnology. 2019, 37(10), 1174-1185. DOI: 10.1038/s41587-019-0247-3
Hines JB, Kacew AJ, Sweis RF. The Development of STING Agonists and Emerging Results as a Cancer Immunotherapy. Current Oncology Reports. 2023, 25(3), 189-199. DOI: 10.1007/s11912-023-01361-0
Huang CQ, Shao N, Huang YY, Chen JF, Wang D, et al. Overcoming challenges in the delivery of STING agonists for cancer immunotherapy: A comprehensive review of strategies and future perspectives. Materials Today. Bio. 2023, 23, 100839. DOI: 10.1016/j.mtbio.2023.100839
Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017, 548(7668), 466-470. DOI: 10.1038/nature23470
Ager CR, Reilley MJ, Nicholas C, Bartkowiak T, Jaiswal AR, et al. Intratumoral STING Activation with T-cell Checkpoint Modulation Generates Systemic Antitumor Immunity. Cancer Immunology Research. 2017, 5(8), 676-684. DOI: 10.1158/2326-6066.CIR-17-0049
Hu YW, Zhang J, Wu XM, Cao L, Nie P, et al. TANK-Binding Kinase 1 (TBK1) Isoforms Negatively Regulate Type I Interferon Induction by Inhibiting TBK1-IRF3 Interaction and IRF3 Phosphorylation. Frontiers in Immunology. 2018, 9, 84. DOI: 10.3389/fimmu.2018.00084
Sun Y, Revach OY, Anderson S, Kessler EA, Wolfe CH, et al. Targeting TBK1 to overcome resistance to cancer immunotherapy. Nature. 2023, 615(7950), 158-167. DOI: 10.1038/s41586-023-05704-6
Motedayen Aval L, Pease JE, Sharma R, Pinato DJ. Challenges and Opportunities in the Clinical Development of STING Agonists for Cancer Immunotherapy. Journal of Clinical Medicine. 2020, 9(10), 3323. DOI: 10.3390/jcm9103323
Kemmoku H, Kuchitsu Y, Mukai K, Taguchi T. Specific association of TBK1 with the trans-Golgi network following STING stimulation. Cell Structure and Function. 2022, 47(1), 19-30. DOI: 10.1247/csf.21080
Chen C, Xu P. Cellular functions of cGAS-STING signaling. Trends in Cell Biology. 2023, 33(8), 630-648. DOI: 10.1016/j.tcb.2022.11.001
Shen MF, Wang YS, Bing TJ, Tang YJ, Liu XY, et al. Alendronate Triggered Dual-Cascade Targeting Prodrug Nanoparticles for Enhanced Tumor Penetration and STING Activation of Osteosarcoma. Advanced Functional Materials. 2023, 33(49), 2307013. DOI: 10.1002/adfm.202307013
Zhang L, Shang K, Li X, Shen M, Lu S, et al. Reduction Sensitive Polymers Delivering Cationic Platinum Drugs as STING Agonists for Enhanced Chemo-Immunotherapy. Advanced Functional Materials. 2022, 32(43), 2204589. DOI: 10.1002/adfm.202204589
Liu XY, Shen MF, Bing TJ, Zhang XY, Li YF, et al. A Bioactive Injectable Hydrogel Regulates Tumor Metastasis and Wound Healing for Melanoma via NIR-Light Triggered Hyperthermia. Advanced Science. 2024, 11(26), e2402208. DOI: 10.1002/advs.202402208
Liu KF, Lan YQ, Li XL, Li MY, Cui L, et al. Development of small molecule inhibitors/agonists targeting STING for disease. Biomedicine & Pharmacotherapy. 2020, 132, 110945. DOI: 10.1016/j.biopha.2020.110945
Guerini D. STING Agonists/Antagonists: Their Potential as Therapeutics and Future Developments. Cells. 2022, 11(7), 1159. DOI: 10.3390/cells11071159
Ding CY, Song ZL, Shen AC, Chen TT, Zhang A. Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway. Acta Pharmaceutica Sinica B. 2020, 10(12), 2272-2298. DOI: 10.1016/j.apsb.2020.03.001
Sasaki N, Homme M, Kitajima S. Targeting the loss of cGAS/STING signaling in cancer. Cancer Science. 2023, 114(10), 3806-3815. DOI: 10.1111/cas.15913
Kato-Inui T, Takahashi G, Hsu S, Miyaoka Y. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Research. 2018, 46(9), 4677-4688. DOI: 10.1093/nar/gky264
Gao FY, Wu YY, Wang RT, Yao YH, Liu YQ, et al. Precise nano-system-based drug delivery and synergistic therapy against androgen receptor-positive triple-negative breast cancer. Acta Pharmaceutica Sinica. B. 2024, 14(6), 2685-2697. DOI: 10.1016/j.apsb.2024.03.012
Lu QL, Chen RY, Du SY, Chen C, Pan YC, et al. Activation of the cGAS-STING pathway combined with CRISPR-Cas9 gene editing triggering long-term immunotherapy. Biomaterials. 2022, 291, 121871. DOI: 10.1016/j.biomaterials.2022.121871
Wiles MV, Qin WN, Cheng AW, Wang HY. CRISPR-Cas9-mediated genome editing and guide RNA design. Mammalian Genome. 2015, 26(9-10), 501-10. DOI: 10.1007/s00335-015-9565-z
Li Y, Zhu ZR, Hua SY, Wan YH, Chen Q, et al. Metal-based nanoparticles promote the activation of cGAS-STING pathway for enhanced cancer immunotherapy. Nano Today. 2024, 58, 102445. DOI: 10.1016/j.nantod.2024.102445
Herhaus L. TBK1 (TANK-binding kinase 1)-mediated regulation of autophagy in health and disease. Matrix Biology. 2021, 100-101, 84-98. DOI: 10.1016/j.matbio.2021.01.004
Chen X, Xu ZJ, Li TF, Thakur A, Wen Y, et al. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomarker Research. 2024, 12(1), 2. DOI: 10.1186/s40364-023-00551-z
Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING Agonists as Cancer Therapeutics. Cancers (Basel). 2021, 13(11), 2695. DOI: 10.3390/cancers13112695
Wu YT, Fang Y, Wei Q, Shi H, Tan HL, et al. Tumor-targeted delivery of a STING agonist improves cancer immunotherapy. Proceedings of the National Academy of Sciences. 2022, 119(49), e2214278119. DOI: 10.1073/pnas.2214278119
Xu Y, Xiong Y. Targeting STING signaling for the optimal cancer immunotherapy. Frontiers in Immunology. 2024, 15, 1482738. DOI: 10.3389/fimmu.2024.1482738
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Cancer Biomoleculars and Therapeutics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.