Nanocage-tethered Polymeric Hybridome for pDNA Delivery: A Revolutionary Approach for Treatment of Glioblastoma

Authors

  • Dilpreet Singh University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali (140413), India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali (140413), India

DOI:

https://doi.org/10.62382/jcbt.v2i1.48

Keywords:

Nanocage, pDNA, Glioblastoma, Delivery, Innovation

Abstract

Glioblastoma, a highly aggressive form of brain cancer, poses a formidable challenge in the field of oncology due to its resistance to conventional therapies and limited drug delivery options. This abstract highlights a groundbreaking strategy for combating glioblastoma by introducing a novel nanocage-tethered polymeric hybridome for the efficient and targeted delivery of plasmid DNA (pDNA). Our innovative approach combines the benefits of nanotechnology and polymer science to create a hybrid system capable of overcoming the inherent obstacles faced in glioblastoma treatment. The nanocage, acting as a carrier, not only ensures the protection and stability of the pDNA payload but also offers precise targeting capabilities. The tethering of polymers to the nanocage further enhances the biocompatibility, cellular uptake, and controlled release of pDNA. This nanocage-tethered polymeric hybridome has demonstrated exceptional potential in preclinical studies. It exhibits an unprecedented ability to penetrate the blood-brain barrier, specifically target glioblastoma cells, and efficiently deliver therapeutic pDNA payloads. Moreover, this approach minimizes off-target effects and reduces systemic toxicity, thus enhancing the safety profile. In conclusion, the development of the nanocage-tethered polymeric hybridome represents a paradigm shift in glioblastoma therapy.

Downloads

Download data is not yet available.

References

Li TZ, Li JF, Chen Z, Zhang SH, Li SL, et al. Glioma diagnosis and therapy: current challenges and nanomaterial-based solutions. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2022, 352, 338-370. DOI: 10.1016/j.jconrel.2022.09.065

Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, et al. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends in Cancer. 2023, 9(1), 9-27. DOI: 10.1016/j.trecan.2022.09.005

Qi D, Li J, Quarles CC, Fonkem E, Wu E. Assessment and prediction of glioblastoma therapy response: challenges and opportunities. Brain: A Journal of Neurology. 2023, 146(4), 1281-1298. DOI: 10.1093/brain/awac450

Pineda E, Domenech M, Hernández A, Comas S, Balaña C. Recurrent glioblastoma: ongoing clinical challenges and future prospects. OncoTargets and Therapy. 2023, 16, 71-86. DOI: 10.2147/OTT.S366371

Chaddad A, Kucharczyk MJ, Daniel P, Sabri S, Jean-Claude BJ, et al. Radiomics in glioblastoma: current status and challenges facing clinical implementation. Frontiers in Oncology. 2019, 9, 374. DOI: 10.3389/fonc.2019.00374

Meng H, Mai WX, Zhang HY, Xue M, Xia T, et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 2013, 7(2), 994-1005. DOI: 10.1021/nn3044066

Mooney J, Bernstock JD, Ilyas A, Ibrahim A, Yamashita D, et al. Current approaches and challenges in the molecular therapeutic targeting of glioblastoma. World Neurosurgery. 2019, 129, 90-100. DOI: 10.1016/j.wneu.2019.05.205

Khot S, Krishnaveni A, Gharat S, Momin M, Bhavsar C, et al. Innovative drug delivery strategies for targeting glioblastoma: overcoming the challenges of the tumor microenvironment. Expert Opinion on Drug Delivery. 2024, 12(12), 1837-1857. DOI: 10.1080/17425247.2024.2429702

de Oliveira VA, Negreiros HA, de Sousa IG, Farias Mendes LK, Alves Damaceno Do Lago JP, et al. Application of nanoformulations as a strategy to optimize chemotherapeutic treatment of glioblastoma: a systematic review. Journal of Toxicology and Environmental Health, Part B, Critical Reviews. 2024, 27(4), 131-152. DOI: 10.1080/10937404.2024.2326679

Devi CM, Deka K, Das AK, Talukdar A, Sola P. Recent Advances in Marine-Derived Nanoformulation for the Management of Glioblastoma. Molecular Biotechnology. 2024, 1-4. DOI: 10.1007/s12033-024-01287-3

Davis ME. Glioblastoma: Overview of Disease and Treatment. Clinical Journal of Oncology Nursing. 2016, 20(5), S2-8. DOI: 10.1188/16.CJON.S1.2-8

Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Molecular Therapy: the Journal of the American Society of Gene Therapy. 2010, 18(7), 1357-64. DOI: 10.1038/mt.2010.85

Zhang YJ, Leonard M, Shu Y, Yang YG, Shu D, et al. Overcoming Tamoxifen Resistance of Human Breast Cancer by Targeted Gene Silencing using Multifunctional pRNA Nanoparticles. ACS Nano. 2017, 11(1), 335-346. DOI: 10.1021/acsnano.6b05910

Hegde MM, Palkar P, Mutalik SP, Mutalik S, Goda JS, et al. Enhancing glioblastoma cytotoxicity through encapsulating O6-benzylguanine and temozolomide in PEGylated liposomal nanocarrier: an in vitro study. 3 Biotech. 2024, 14(11), 275. DOI: 10.1007/s13205-024-04123-2

Guo ZS, Cao GS, Yang HP, Zhou HN, Li L, et al. A combination of four active compounds alleviates cerebral ischemia–reperfusion injury in correlation with inhibition of autophagy and modulation of AMPK/mTOR and JNK pathways. Journal of Neuroscience Research. 2014, 92(10), 1295-306. DOI: 10.1002/jnr.23400

Yu WP, Zhu XW, Liu JC, Zhou JL. Biofunctionalized Decellularized Tissue-Engineered Heart Valve with Mesoporous Silica Nanoparticles for Controlled Release of VEGF and RunX2-siRNA against Calcification. Bioengineering. 2023, 10(7), 859. DOI: 10.3390/bioengineering10070859

Sun T, Zhang YS, Pang B, Hyun DC, Yang M, et al. Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie International Edition. 2014, 53(45), 12320-64. DOI: 10.1002/anie.201403036

Ghosh AK, Ghosh A, Das PK. Nanotechnology Meets Stem Cell Therapy for Treating Glioblastomas: A Review. ACS Applied Nano Materials. 2024, 7(3), 2430-2460. DOI: abs/10.1021/acsanm.3c04714

Feng HQ, Zhao CC, Tan PC, Liu RP, Chen X, et al. Nanogenerator for biomedical applications. Advanced Healthcare Materials. 2018, 7, 1-4. DOI: 10.1002/adhm.201701298

Wang J, Xiong Z, Zheng J, Zhan X, Tang J. Light-driven micro/nanomotor for promising biomedical tools, principle, challenge, and prospect. Accounts of Chemical Research. 2018, 51(9), 1957-1965. DOI: 10.1021/acs.accounts.8b00254

Fernandes S, Vieira M, Prudêncio C, Ferraz R. Betulinic acid for glioblastoma treatment: reality, challenges and perspectives. International Journal of Molecular Sciences. 2024, 25(4), 2108. DOI: 10.3390/ijms25042108

Mishra RK, Rajakumari R. Nanobiosensors for biomedical application. Characterization and Biology of Nanomaterials for Drug Delivery. In Book, Characterization and Biology of Nanomaterials for Drug Delivery, 2019, 8, 1-23. DOI: 10.1016/B978-0-12-814031-4.00001-5

Wang J, Gao W. Nano/microscale motors, biomedical opportunities and challenges. ACS Nano. 2012, 6(7), 5745-5751. DOI: 10.1021/nn3028997

Gao CY, Wang Y, Ye ZH, Lin ZH, Ma X, et al. Biomedical micro-/nanomotors, From overcoming biological barriers to in vivo imaging. Advanced Materials. 2021, 33(6), 176-186. DOI: 10.1002/adma.202000512

Bansal A, Zhang Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Accounts of Chemical Research. 2014, 47(10), 3052-3060. DOI: 10.1021/ar500217w

Lu ZX, Bai S, Shi YS, Xu DZ, Chu CZ, Liu G, et al. Artificial nanocage-based 3D framework platforms, From construction design to biomedical applications. Chemical Engineering Journal. 2021, 426, 131891. DOI: 10.1016/j.cej.2021.131891

Chen Y, Tan CL, Zhang H, Wang LZ. Two-dimensional graphene analogues for biomedical applications. Chemical Society Reviews. 2015, 44(9), 2681-2701. DOI: 10.1039/c4cs00300d

Yata T, Lee KY, Dharakul T, Songsivilai S, Bismarck A, et al. Hybrid nanomaterial complexes for advanced phage-guided gene delivery. Molecular Therapy. Nucleic Acids. 2014, 3(8), e185. DOI: 10.1038/mtna.2014.37

Wang H, Liu N, Yang FX, Hu NN, Wang MY, et al. Bioengineered protein nanocage by small heat shock proteins delivering mTERT siRNA for enhanced colorectal cancer suppression. ACS Applied Bio Materials. 2022, 5(3), 1330-1340. DOI: 10.1021/acsabm.1c01221

Guan X, Chang Y, Sun J, Song J, Xie Y. Engineered Hsp protein nanocages for siRNA delivery. Macromolecular Bioscience. 2018, 18(5), e1800013. DOI: 10.1002/mabi.201800013

Lim DG, Rajasekaran N, Lee D, Kim NA, Jung HS, et al. Polyamidoamine-decorated nanodiamonds as a hybrid gene delivery vector and siRNA structural characterization at the charged interfaces. ACS Applied Materials & Interfaces. 2017, 9(37), 31543-31556. DOI: 10.1021/acsami.7b09624

Mobaleghol Eslam H, Hataminia F, Esmaeili F, Salami SA, Ghanbari H, et al. Preparation of a nanoemulsion containing active ingredients of cannabis extract and its application for glioblastoma: in vitro and in vivo studies. BMC Pharmacology and Toxicology. 2024, 25(1), 73. DOI: 10.1186/s40360-024-00788-w

Mishra K, Kakhlon O. Nanodrug delivery-a noble approach in neurodegenerative disorder and glioblastoma. Nanosensors in Healthcare Diagnostics. 2025, 87-115. DOI: 10.1016/B978-0-443-19129-9.00002-9

Kim MG, Park JY, Shim G, Choi HG, Oh YK. Biomimetic DNA nanoballs for oligonucleotide delivery. Biomaterials. 2015, 62, 155-63. DOI: 10.1016/j.biomaterials.2015.04.037

Sun D, Maeno H, Gujrati M, Schur R, Maeda A, et al. Self-assembly of a multifunctional lipid with core-shell dendrimer DNA nanoparticles enhanced efficient gene delivery at low charge ratios into RPE cells. Macromolecular Bioscience. 2015, 15(12), 1663-72. DOI: 10.1002/mabi.201500192

Gao Y, Gu WW, Chen LL, Xu ZH, Li YP. A multifunctional nano device as non-viral vector for gene delivery, in vitro characteristics and transfection. Journal of Controlled Release. 2007, 118(3), 381-8. DOI: 10.1016/j.jconrel.2007.01.006

Shan YB, Luo T, Peng C, Sheng RL, Cao AM, et al. Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials. 2012, 33(10), 3025-35. DOI: 10.1016/j.biomaterials.2011.12.045

Jiang T, Zhang ZH, Zhang YL, Lv HX, Zhou JP, et al. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials. 2012, 33(36), 9246-58. DOI: 10.1016/j.biomaterials.2012.09.027

Bhise NS, Gray RS, Sunshine JC, Htet S, Ewald AJ, et al. The relationship between terminal functionalization and molecular weight of a gene delivery polymer and transfection efficacy in mammary epithelial 2D cultures and 3D organotypic cultures. Biomaterials. 2010, 31(31), 8088-96. DOI: 10.1016/j.biomaterials.2010.07.023

Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors, principles, pitfalls and (pre-) clinical progress. Journal of Controlled Release. 2012, 161(2), 175-87. DOI: 10.1016/j.jconrel.2011.09.063

Shi JJ, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering, From discovery to applications. Nano Letters. 2010, 10(9), 3223-30. DOI: 10.1021/nl102184c

Shukla R, Singh A, Singh KK. Vincristine-based nanoformulations: A preclinical and clinical studies overview. Drug Delivery and Translational Research. 2024, 14(1), 1-16. DOI: 10.1007/s13346-023-01389-6

Gao HL, Qian J, Yang Z, Pang ZQ, Xi ZJ, et al. Whole-cell SELEX aptamer-functionalised poly(ethyleneglycol)-poly(ε-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials. 2012, 33(23), 6264-72. DOI: 10.1016/j.biomaterials.2012.05.020

Duan H, Wang L, Wang S, He Y. Surface modification potentials of cell membrane-based materials for targeted therapies: a chemotherapy-focused review. Nanomedicine. 2023, 18, 1281-303. DOI: 10.2217/nnm-2023-0164

Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews. 2003, 55(3), 329-47. DOI: 10.1016/s0169-409x(02)00228-4

Yasaswi PS, Shetty K, Yadav KS. Temozolomide nano enabled medicine, Promises made by the nanocarriers in glioblastoma therapy. Journal of Controlled Release. 2021, 336, 549-71. DOI: 10.1016/j.jconrel.2021.07.003

Wang DD, Wu HH, Zhou JJ, Xu PP, Wang CL, et al. In situ one-pot synthesis of MOF-polydopamine hybrid nanogels with enhanced photothermal effect for targeted cancer therapy. Advanced Science. 2018, 5(6), 45-55. DOI: 10.1002/advs.201800287

Li YL, Yu C, Yang B, Liu ZR, Xia PY, et al. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum. Biosensors & Bioelectronics. 2018, 102, 307-315. DOI: 10.1016/j.bios.2017.11.047

Gu CK, Chen H, Wang YJ, Zhang T, Wang HF, et al. Structural insight into binary protein MOFs with ferritin nanocages as linkers and nickel clusters as nodes. Chemistry. 2020, 26(14), 3016-3021. DOI: 10.1002/chem.201905315

Hu ZJ, Wang XM, Wang JH, Chen XW. PEGylation of metal-organic framework for selective isolation of glycoprotein immunoglobulin G. Talanta. 2020, 208, 120433. DOI: 10.1016/j.talanta.2019.120433

Ahmed A, Karami A, Sabouni R, Husseini G, Paul V. pH and ultrasound dual-responsive drug delivery system based on PEG-folate-functionalized iron-based metal-organic framework for targeted doxorubicin delivery. Colloids and Surfaces A, Physicochemical and Engineering Aspects. 2021, 626, 127062. DOI: 10.1016/j.colsurfa.2021.127062

Kulandaivel S, Lin CH, Yeh YC. The bi-metallic MOF-919 (Fe-Cu) nanozyme capable of bifunctional enzyme-mimicking catalytic activity. Chemical Communications. 2022, 58(4), 569-572. DOI: 10.1039/d1cc05908d

Zhang N, Huang T, Xie PS, Yang Z, Zhang L, et al. Epitaxial growth of guanidyl-functionalized magnetic metal-organic frameworks with multiaffinity sites for selective capture of global phosphopeptides. ACS Applied Materials & Interfaces. 2022, 14(34), 39364-39374. DOI: 10.1021/acsami.2c10353

Carrillo-Carrión C, Comaills V, Visiga AM, Gauthier BR, Khiar N. Enzyme-responsive Zr-based metal-organic frameworks for controlled drug delivery, Taking advantage of clickable PEG-phosphate ligands. ACS Applied Materials & Interfaces. 2023, 15(23), 27600-27611. DOI: 10.1021/acsami.3c03230

Wu S, Sun ZW, Peng Y, Han YW, Li JL, et al. Peptide-functionalized metal-organic framework nanocomposite for ultrasensitive detection of secreted protein acidic and rich in cysteine with practical application. Biosensors & Bioelectronics. 2020, 169, 112613. DOI: 10.1016/j.bios.2020.112613

Yin S, Wang Y, Zhang BY, Qu YR, Liu YD, et al. Engineered human heavy-chain ferritin with half-life extension and tumor targeting by PAS and RGDK peptide functionalization. Pharmaceutics. 2021, 13(4), 521. DOI: 10.3390/pharmaceutics13040521

Zhou JB, Patel TR, Sirianni RW, Strohbehn G, Zheng MQ, et al. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings of the National Academy of Sciences. 2013, 110(29), 11751-6. DOI: 10.1073/pnas.1304504110

Makharza SA, Cirillo G, Vittorio O, Valli E, Voli F, et al. Magnetic graphene oxide nanocarrier for targeted delivery of cisplatin, a perspective for glioblastoma treatment. Pharmaceuticals. 2019, 12(2), 76. DOI: 10.3390/ph12020076

Ramalho MJ, Loureiro JA, Coelho MAN, Pereira MC. Transferrin receptor-targeted nanocarriers, overcoming barriers to treat glioblastoma. Pharmaceutics. 2022, 14(2), 279. DOI: 10.3390/pharmaceutics14020279

Barbarisi M, Iaffaioli RV, Armenia E, Schiavo L, De Sena G, et al. Novel nanohydrogel of hyaluronic acid loaded with quercetin alone and in combination with temozolomide as new therapeutic tool, CD44 targeted based, of glioblastoma multiforme. Journal of Cellular Physiology. 2018, 233(10), 6550-6564. DOI: 10.1002/jcp.26238

Demirel GB, Aygul E, Dag A, Atasoy S, Cimen Z, et al. Folic acid-conjugated pH and redox-sensitive ellipsoidal hybrid magnetic nanoparticles for dual-triggered drug release. ACS Applied Bio Materials. 2020, 3(8), 4949-4961. DOI: 10.1021/acsabm.0c00488

Majchrzak-Celińska A, Studzińska-Sroka E. New Avenues and Major Achievements in Phytocompounds Research for Glioblastoma Therapy. Molecules. 2024, 29(7), 1682. DOI: 10.3390/molecules29071682

Liu TJ, Tong LL, Lv NN, Ge XG, Fu QR, et al. Two-stage size decrease and enhanced photoacoustic performance of stimuli-responsive polymer-gold nanorod assembly for increased tumor penetration. Advanced Functional Materials. 2019, 29(16), 176-187. DOI: 10.1002/adfm.201806429

Lei B, Sun MJ, Chen MX, Xu SH, Liu HL. pH and temperature double-switch hybrid micelles for controllable drug release. Langmuir. 2021, 37(50), 14628-14637. DOI: 10.1021/acs.langmuir.1c02298

Brazzale C, Mastrotto F, Moody P, Watson P, Balasso A, et al. Control of targeting ligand display by pH-responsive polymers on gold nanoparticles mediates selective entry into cancer cells. Nanoscale. 2017, 9(31), 11137-11147. DOI: 10.1039/c7nr02595e

Qian X, Li J, Nie S. Stimuli-responsive SERS nanoparticles, conformational control of plasmonic coupling and surface Raman enhancement. Journal of the American Chemical Society. 2009, 131(22), 7540-7541. DOI: 10.1021/ja902226z

Zhang P, Xu Q, Li X, Wang Y. pH-responsive polydopamine nanoparticles for photothermally promoted gene delivery. Materials Science & Engineering. C, Materials for Biological Applications. 2020, 108, 110396. DOI: 10.1016/j.msec.2019.110396

Ahn S, Lee S. Nanoparticle role on the repeatability of stimuli-responsive nanocomposites. Scientific Reports. 2014, 4, 6624. DOI: 10.1038/srep06624

Ramalho MJ, Serra É, Loureiro JA, Pereira MC. Repurposing gemcitabine for glioblastoma treatment: the role of drug-conjugates and nanoparticles as drug delivery systems. Journal of Drug Delivery Science and Technology. 2024, 96, 105714. DOI: 10.1016/j.jddst.2024.105714

Wang F, Shen Y, Zhang W, Li M, Wang Y, et al. Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD-modified disulfide-linked polyethylenimine-functionalized gold nanorod. Journal of Controlled Release. 2014, 196, 37-51. DOI: 10.1016/j.jconrel.2014.09.026

Kiew SF, Kiew LK, Lee HB, Imae T, Chung LY. Assessing biocompatibility of graphene oxide-based nanocarriers, A review. Journal of Controlled Release. 2016, 226, 217-228. DOI: 10.1016/j.jconrel.2016.02.015

Bhaskar S, Lim S. Engineering protein nanocages as carriers for biomedical applications. NPG Asia Materials. 2017, 9(4), e371. DOI: 10.1038/am.2016.128

Liang M, Fan K, Zhou M, Duan D, Zheng J, et al. H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proceedings of the National Academy of Sciences. 2014, 111(41), 14900-14905. DOI: 10.1073/pnas.1407808111

Bullock CJ, Bussy C. Biocompatibility considerations in the design of graphene biomedical materials. Advanced Materials Interfaces. 2019, 6(11), 1-19. DOI: 10.1002/admi.201900229

Skrabalak SE, Chen JY, Au L, Lu XM, Li XD, et al. Gold nanocages for biomedical applications. Advanced Materials. 2007, 19(20), 3177-3184. DOI: 10.1002/adma.200701972

Wang R, Song W, Zhu J, Shao X, Yang C, et al. Biomimetic nano-chelate diethyldithiocarbamate Cu/Fe for enhanced metalloimmunity and ferroptosis activation in glioma therapy. Journal of Controlled Release. 2024, 368, 84-96. DOI: 10.1016/j.jconrel.2024.02.004

Skrabalak SE, Au L, Lu XM, Li XD, Xia YN. Gold nanocages for cancer detection and treatment. Nanomedicine. 2007, 2(5), 657-668. DOI: 10.2217/17435889.2.5.657

Jamalipour SG, Iravani S. Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging, current challenges and future perspectives. Green Chemistry. 2020, 22(9), 2662-2687. DOI: 10.1039/D0GC00734J

João J, Prazeres DM. Manufacturing of non-viral protein nanocages for biotechnological and biomedical applications. Frontiers in Bioengineering and Biotechnology. 2023, 11, 1200729. DOI: 10.3389/fbioe.2023.1200729

Zhong D, Wu HY, Wu YH, Li YK, Xu XH, et al. Rational design and facile fabrication of biocompatible triple responsive dendrimeric nanocages for targeted drug delivery. Nanoscale. 2019, 11(32), 15091-15103. DOI: 10.1039/c9nr04631c

Segura T, Shea LD. Surface-tethered DNA complexes for enhanced gene delivery. Bioconjugate Chemistry. 2002, 13(3), 621-629. DOI: 10.1021/bc015575f

Wood KC, Azarin SM, Arap W, Pasqualini R, Langer R, et al. Tumor-targeted gene delivery using molecularly engineered hybrid polymers functionalized with a tumor-homing peptide. Bioconjugate Chemistry. 2008, 19(2), 403-405. DOI: 10.1021/bc700408r

Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nature Reviews Drug Discovery. 2005, 4(7), 581-593. DOI: 10.1038/nrd1775

Lee DH, Lee YM, Kim JH, Lee MK, Kim WJ. Enhanced tumor-targeted gene delivery by bioreducible polyethylenimine tethering EGFR divalent ligands. Biomaterials Science. 2015, 3(7), 1096-1104. DOI: 10.1039/c5bm00004a

Garnett MC. Gene-delivery systems using cationic polymers. Critical Reviews in Therapeutic Drug Carrier Systems. 1999, 16(2), 147-207. DOI: 10.1615/CritRevTherDrugCarrierSyst.v16.i2.10

Witzigmann D, Wu DL, Schenk SH, Balasubramanian V, Meier W, et al. Biocompatible polymer-peptide hybrid-based DNA nanoparticles for gene delivery. ACS Applied Materials & Interfaces. 2015, 7(19), 10446-10556. DOI: 10.1021/acsami.5b01684

Xu PS, Quick GK, Yeo Y. Gene delivery through the use of a hyaluronate-associated intracellularly degradable crosslinked polyethyleneimine. Biomaterials. 2009, 30(29), 5834-5843. DOI: 10.1016/j.biomaterials.2009.07.012

Zhang QF, Yi WJ, Wang B, Zhang J, Ren LF, et al. Linear polycations by ring-opening polymerization as non-viral gene delivery vectors. Biomaterials. 2013, 34(21), 5391-5401. DOI: 10.1016/j.biomaterials.2013.03.083

Wong SY, Pelet JM, Putnam D. Polymer systems for gene delivery - Past, present, and future. Progress in Polymer Science. 2007, 32(8-9), 799-837. DOI: 10.1016/j.progpolymsci.2007.05.007

Son SJ, Namgung R, Kim JH, Singha K, Kim WJ. Bioreducible polymers for gene silencing and delivery. Accounts of Chemical Research. 2012, 45(7), 1100-1112. DOI: 10.1021/ar200248u

Kim J, Kim H, Kim W. Single-layered MoS2-PEI-PEG nanocomposite-mediated gene delivery controlled by photo and redox stimuli. Small. 2016, 12(9), 1184-1192. DOI: 10.1002/smll.201501655

Jiang XL, Fan XB, Xu W, Zhao CG, Wu HL, et al. Self-assembled peptide nanoparticles responsive to multiple tumor microenvironment triggers provide highly efficient targeted delivery and release of antitumor drug. Journal of Controlled Release. 2019, 316, 196-207. DOI: 10.1016/j.jconrel.2019.10.031

Mo R, Jiang TY, Sun WJ, Gu Z. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials. 2015, 50, 67-74. DOI: 10.1016/j.biomaterials.2015.01.053

Wen LJ, Hu YW, Meng TT, Tan YN, Zhao MD, et al. Redox-responsive polymer inhibits macrophage uptake for effective intracellular gene delivery and enhanced cancer therapy. Colloids and Surfaces B, Biointerfaces. 2019, 175, 392-402. DOI: 10.1016/j.colsurfb.2018.12.016

Wang GQ, Mu M, Zhang ZL, Chen YD, Yang N, et al. Systemic delivery of tannic acid-ferric-masked oncolytic adenovirus reprograms tumor microenvironment for improved the rapeutic efficacy in glioblastoma. Cancer Gene Therapy. 2024, 31(12), 1804-1817. DOI: 10.1038/s41417-024-00839-8

Downloads

Published

2025-01-01

How to Cite

Singh, D. (2025). Nanocage-tethered Polymeric Hybridome for pDNA Delivery: A Revolutionary Approach for Treatment of Glioblastoma. Journal of Cancer Biomoleculars and Therapeutics, 2(1), 133–144. https://doi.org/10.62382/jcbt.v2i1.48

Issue

Section

Articles