The miRNA-9 Isoform Story in Cancer: An OncomiR or Tumor Suppressor?

Authors

  • Mahmoud Ibrahim Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA; Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA
  • Maryam Abdul-Kader Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA; Department of Biological Science, Illinois Institute of Technology, Chicago, IL, USA
  • Ava Azizi Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA; Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
  • Evan Schneider Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA; Department of Informatics, Northern Kentucky University, Highland Heights, KY, USA
  • Gabriel Salyer Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA; Department of Biology, New College of Florida, Sarasota, FL, USA
  • Jill Ivory Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA; Department of Biology, Grove City College, Grove City, PA, USA
  • Nora Reece-Orr Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA; Department of Communication, Media and Theatre, Northeastern Illinois University, Chicago, IL, USA
  • Heather O’Donnell Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA; Department of English, Rutgers University, New Brunswick, NJ, USA
  • Linda Gerace Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA; Department of English, Southern New Hampshire University, Manchester, NH, USA
  • Zoe Foster Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
  • Alan Mariño del Puerto Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA; College of Natural Sciences, Minerva University, San Francisco, CA, USA
  • Yvonne Chen Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA; Department of Biology, Brandeis University, Waltham, MA, USA
  • Brian D. Adams Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA

DOI:

https://doi.org/10.62382/jcbt.v2i2.53

Keywords:

miRNA, Therapy, Cancer, miR-9, Tumor Suppressor, Onco-miR, Neurology, Brain

Abstract

MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. They function by binding to newly transcribed mRNAs of protein-coding genes, suppressing gene expression at the post-transcriptional level. Thus, miRNAs play a crucial role in controlling a plethora of cellular processes, making miRNAs a unique class of regulatory RNA with defined developmental roles. Thus, these small yet powerful miRNAs have garnered the attention of many researchers due to the known biological regulatory role during chronic disease onset, including cancer. Over the past decade, novel small RNA therapies have been developed and implemented successfully in the clinic to combat several chronic disorders. With respect to cancer, a number of miRNAs were demonstrated to be correlated with cancer progression and disease onset. These oncomiRs or tumor suppressors control well conserved protein signaling cascades that become dysregulated during the tumorigenic process. In particular miR-9 has garnered much attention over the past decade due to the abundance of this miRNA in certain tissues such as the brain and the epithelium. In this review, we discuss the importance of miRNAs in cancer, the biology of miR-9 in a variety of cancers, explain how the term ‘oncomiR’ or ‘tumor suppressor miR’ depends upon the cellular context of gene expression during oncogenesis, and how the abundance of certain miR-9 isoforms in the cell during the initiating tumorigenic event could influence the molecular heterogeneity of the tumor. Additionally, next-generation miRNA therapeutics offer promising strategies for cancer treatment by the precise targeting of disease-related pathways with minimal toxicity and off-target effects. These strategies can also serve as solutions in situations where chemo- and radio-resistance persists.

Downloads

References

Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nature Reviews Cancer. 2006, 6(4), 259-269. DOI: 10.1038/nrc1840

Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annual Review of Medicine. 2009, 60, 167-179. DOI: 10.1146/annurev.med.59.053006.104707

Croce CM. Oncogenes and Cancer. New England Journal of Medicine. 2008, 358, 502-511. DOI: 10.1056/NEJMra072367

Adams BD, Kasinski AL, Slack FJ. Aberrant Regulation and Function of MicroRNAs in Cancer. Current Biology. 2014, 24(16), R762-76. DOI: 10.1016/j.cub.2014.06.043

Kuhn DE, Martin MM, Feldman DS, Terry AV, Nuovo GJ, et al. Experimental validation of miRNA targets. Methods. 2008, 44(1), 47-54. DOI: 10.1016/j.ymeth.2007.09.005

Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004, 116(2), 281-297. DOI: 10.1016/S0092-8674(04)00045-5

Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009, 136(2), 215-233. DOI: 10.1016/j.cell.2009.01.002

Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets ofmicroRNAs. Genome Research. 2009, 19(1), 92-105. DOI: 10.1101/gr.082701.108

Hu CX, Cao YB, Li P, Tang XR, Yang MH, et al. Oleanolic Acid Induces Autophagy and Apoptosis via the AMPK-mTOR Signaling Pathway in Colon Cancer. Journal of Oncology. 2021, 8281718. DOI: 10.1155/2021/8281718

Zhang XM, Yu SS, Li XB, Wen XX, Liu S, et al. Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacological Research. 2023, 191, 106777. DOI: 10.1016/j.phrs.2023.106777

Guo WW, Qiao TY, Li T. The role of stem cells in small-cell lung cancer: Evidence from chemoresistance to immunotherapy. Seminars in Cancer Biology. 2022, 87, 160-169. DOI: 10.1016/j.semcancer.2022.11.006

Guo Q, Li D, Luo XY, Yuan Y, Li T, et al. The Regulatory Network and Potential Role of LINC00973-miRNA-mRNA ceRNA in the Progression of Non-Small-Cell Lung Cancer. Frontiers in Immunology. 2021, 12, 684807. DOI: 10.3389/fimmu.2021.684807

Sinclair PB, Harrison CJ, Jarosová M, Foroni L. Analysis of balanced rearrangements of chromosome 6 in acute leukemia: Clustered breakpoints in q22-q23 and possible involvement of c-MYB in a new recurrent translocation, t(6;7)(q23;q32-36). Haematologica. 2005, 90(5), 602-611. DOI: 10.1182/blood.V104.11.2893.2893

Melo SA, Esteller M. Dysregulation of microRNAs in cancer: Playing with fire. FEBS Letters. 2011, 585(13), 2087-99. DOI: 10.1016/j.febslet.2010.08.009

Wiemer EAC. The role of microRNAs in cancer: No small matter. European Journal of Cancer. 2007, 43(10), 1529-1544. DOI: 10.1016/j.ejca.2007.04.002

Izumiya M, Okamoto K, Tsuchiya N, Nakagama H. Functional screening using a microRNA virus library and microarrays: A new high-throughput assay to identify tumor-suppressive microRNAs. Carcinogenesis. 2010, 31(8), 1354-1359. DOI: 10.1093/carcin/bgq112

Fan MY, Krutilina R, Sun J, Sethuraman A, Yang CH, et al. Comprehensive analysis of microRNA (miRNA) targets in breast cancer cells. The Journal of Biological Chemistry. 2013, 288(38), 27480-93. DOI: 10.1074/jbc.M113.491803

Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical and Biophysical Research Communications. 2005, 334(4), 1351-1358. DOI: 10.1016/j.bbrc.2005.07.030

Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Research. 2013, 73(2), 473-477. DOI: 10.1158/0008-5472.CAN-12-3731

Zhao XL, Xiao ZH, Li B, Li HW, Yang B, et al. miRNA-21 may serve as a promising noninvasive marker of glioma with a high diagnostic performance: a pooled analysis of 997 patients. Therapeutic Advances in Medical Oncology. 2021, 13, 1758835920987650. DOI: 10.1177/1758835920987650

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103(7), 2257-61. DOI: 10.1073/pnas.0510565103

O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology. 2018, 9, 402. DOI: 10.3389/fendo.2018.00402

Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Molecular Endocrinology. 2007, 21(5), 1132-1147. DOI: 10.1210/me.2007-0022

Peng Y, Croce CM. The role of MicroRNAs in human cancer.Signal transduction and targeted therapy. 2016, 1, 15004. DOI: 10.1038/sigtrans.2015.4

Chua FY, Adams BD. Androgen receptor and miR-206 regulation in prostate cancer. Transcription. 2017, 8(5), 313-327. DOI: 10.1080/21541264.2017.1322668

Calin GA, Ferracin M, Cimmino A, Di-Leva G, Shimizu M, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. The New England Journal of Medicine. 2005, 353(17), 1793-1801. DOI: 10.1056/NEJMoa050995

Calin GA, Croce CM. MicroRNA signatures in human cancers. Nature Reviews Cancer. 2006, 6(11), 857-866. DOI: 10.1038/nrc1997

Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005, 122(1), 6-7. DOI: 10.1016/j.cell.2005.06.036

Marcucci G, Maharry K, Radmacher MD, Mrózek K, Vukosavljevic T, et al. Prognostic significance of, and gene and MicroRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: A cancer and leukemia group B study. Journal of Clinical Oncology. 2008, 26(31), 5078-5087. DOI: 10.1200/JCO.2008.17.5554

Gonzalez-Martin A, Adams BD, Lai MY, Shepherd J, Salvador-Bernaldez M, et al. The microRNA miR-148a functions as a critical regulator of B cell tolerance and autoimmunity. Nature Immunology. 2016, 17(4), 433-440. DOI: 10.1038/ni.3385

Zhang DS, Li YY, Chen XJ, Li YJ, Liu ZY, et al. BCL2 promotor methylation and miR-15a/16-1 upregulation is associated with sanguinarine-induced apoptotic death in rat HSC-T6 cells. Journal of Pharmacological Sciences. 2015, 127(1), 135-44. DOI: 10.1016/j.jphs.2014.11.012

Diniz MG, Gomes CC, De-Castro WH, Guimarães ALS, De-Paula AMB, et al. MiR-15a/16-1 influences BCL2 expression in keratocystic odontogenic tumors. Cellular Oncology. 2012, 35(4), 285-91. DOI: 10.1007/s13402-012-0087-3

Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102(39), 13944-9. DOI: 10.1073/pnas.0506654102

Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: From gene discovery to treatment. Cell Death and Differentiation. 2018, 25(1), 21-26. DOI: 10.1038/cdd.2017.159

Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, et al. MicroRNAs in body fluids-the mix of hormones and biomarkers. Nature Reviews Clinical Oncology. 2011, 8(8), 467-477. DOI: 10.1038/nrclinonc.2011.76

Heneghan HM, Miller N, Kerin MJ. MiRNAs as biomarkers and therapeutic targets in cancer. Current Opinion in Pharmacology. 2010, 10(5), 543-550. DOI: 10.1016/j.coph.2010.05.010

Moro-Soria A. MicroRNAs as biomarkers and therapeutic targets in cancer. Biotecnologia Aplicada. 2014, 31(2), 87-92. DOI: 10.1016/j.trsl.2011.01.013

Adams BD, Arem H, Hubal MJ, Cartmel B, Li FY, et al. Exercise and weight loss interventions and miRNA expression in women with breast cancer. Breast Cancer Research and Treatment. 2018, 170(1), 55-67. DOI: 10.1007/s10549-018-4738-6

Ha MJ, Kim VN. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology. 2014, 15, 509-524. DOI: 10.1038/nrm3838

Lee YT, Ahn CY, Han JJ, Choi HJ, Kim JW, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003, 425(6956), 415-419. DOI: 10.1038/nature01957

Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology. 2009, 11(3), 228-34. DOI: 10.1038/ncb0309-228

Yang JS, Lai EC. Alternative miRNA Biogenesis Pathways and the Interpretation of Core miRNA Pathway Mutants. Molecular Cell. 2011, 43(6), 892-903. DOI: 10.1016/j.molcel.2011.07.024

Du TT, Zamore PD. Beginning to understand microRNA function. Cell Research. 2007, 17(8), 661-663. DOI: 10.1038/cr.2007.67

MacFarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Current Genomics. 2010, 11(7), 537-561. DOI: 10.2174/138920210793175895

Yang JS, Lai EC. Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle. 2010, 9(22), 4455-4460. DOI: 10.4161/cc.9.22.13958

Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005, 436(7051), 740-744. DOI: 10.1038/nature03868

Kurihara Y, Watanabe Y. Processing of miRNA precursors. Methods in Molecular Biology. 2010, 592, 231-41. DOI: 10.1007/978-1-60327-005-2_15

Gao M, Wei W, Li MM, Wu YS, Ba ZQ, et al. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination. Cell Research. 2014, 24(5), 532-541. DOI: 10.1038/cr.2014.36

Lee SR, Collins K. Two classes of endogenous small RNAs in Tetrahymena thermophila. Genes & Development. 2006, 20(1), 28-33. DOI: 10.1101/gad.1377006

Chen Q, Zhou T. Emerging functional principles of tRNA-derived small RNAs and other regulatory small RNAs. Journal of Biological Chemistry. 2023, 299(10), 105225. DOI: 10.1016/j.jbc.2023.105225

Wang HB, Gao Y, Guo JY. Comprehensive analysis of Dicer-like, Argonaute, and RNA-dependent RNA polymerase gene families and their expression analysis in response to abiotic stresses in Jatropha curcas. Journal of Plant Interactions. 2024, 19(1). DOI: 10.1080/17429145.2023.2282432

Kocic G, Hadzi-Djokic J, Colic M, Veljkovic A, Tomovic K, et al. The Role of Nucleases Cleaving TLR3, TLR7/8 and TLR9 Ligands, Dicer RNase and miRNA/piRNA Proteins in Functional Adaptation to the Immune Escape and Xenophagy of Prostate Cancer Tissue. International Journal of Molecular Sciences. 2023, 24(1), 509. DOI: 10.3390/ijms24010509

Nakanishi K. When Argonaute takes out the ribonuclease sword. Journal of Biological Chemistry. 2024, 300(1), 105499. DOI: 10.1016/j.jbc.2023.105499

Flynt AS, Greimann JC, Chung WJ, Lima CD, Lai EC. MicroRNA Biogenesis via Splicing and Exosome-Mediated Trimming in Drosophila. Molecular Cell. 2010, 38(6), 900-7. DOI: 10.1016/j.molcel.2010.06.014

Butkytė S, Čiupas L, Jakubauskienė E, Vilys L, Mocevicius P, et al. Splicing-dependent expression of microRNAs of mirtron origin in human digestive and excretory system cancer cells. Clinical Epigenetics. 2016, 8, 33. DOI: 10.1186/s13148-016-0200-y

Westholm JO, Lai EC. Mirtrons: MicroRNA biogenesis via splicing. Biochimie. 2011, 93(11), 1897-904. DOI: 10.1016/j.biochi.2011.06.017

Pawlina-Tyszko K, Szmatoła T. Benchmarking of bioinformatics tools for NGS-based microRNA profiling with RT-qPCR method. Functional & Integrative Genomics. 2023, 23(4), 347. DOI: 10.1007/s10142-023-01276-w

Vasconcelos AM, Carmo MB, Ferreira B, Viegas I, Gama-Carvalho M, et al. IsomiR_Window: a system for analyzing small-RNA-seq data in an integrative and user-friendly manner. BMC Bioinformatics. 2021, 22(1), 37. DOI: 10.1186/s12859-021-03955-6

Nersisyan S, Gorbonos A, Makhonin A, Zhiyanov A, Shkurnikov M, et al. isomiRTar: a comprehensive portal of pan-cancer 50-isomiR targeting. PeerJ. 2022, 10, e14205. DOI: 10.7717/peerj.14205

Moradi A, Whatmore P, Farashi S, Barrero RA, Batra J. IsomiR-eQTL: A Cancer-Specific Expression Quantitative Trait Loci Database of miRNAs and Their Isoforms. International Journal of Molecular Sciences. 2022, 23(20), 12493. DOI: 10.3390/ijms232012493

Nersisyan S, Zhiyanov A, Engibaryan N, Maltseva D, Tonevitsky A. A novel approach for a joint analysis of isomiR and mRNA expression data reveals features of isomiR targeting in breast cancer. Frontiers in Genetics. 2022, 13, 1070528. DOI: 10.3389/fgene.2022.1070528

Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nature Reviews Molecular Cell Biology. 2013, 14(8), 475-88. DOI: 10.1038/nrm3611

Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature Cell Biology. 2009, 11(9), 1143-1149. DOI: 10.1038/ncb1929

Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA Translation and Stability by microRNAs. Annual Review of Biochemistry. 2010, 79, 351-379. DOI: 10.1146/annurev-biochem-060308-103103

McKenzie AJ, Hoshino D, Hong NH, Cha DJ, Franklin JL, et al. KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Reports. 2016, 15(5), 978-987. DOI: 10.1016/j.celrep.2016.03.085

Hwang HW, Wentzel EA, Mendell JT. A Hexanucleotide Element Directs MicroRNA Nuclear Import. Science. 2007, 315(5808), 97-100. DOI: 10.1126/science.1136235

Kim CK, Linscott ML, Flury S, Zhang MJ, Newby ML, et al. 17β-estradiol regulates mir-9-5p and mir-9-3p stability and function in the aged female rat brain. Non-coding RNA. 2021, 7(3), 53. DOI: 10.3390/ncrna7030053

Xian X, Cai LL, Li Y, Wang RC, Xu YH, et al. Neuron secrete exosomes containing miR-9-5p to promote polarization of M1 microglia in depression. Journal of Nanobiotechnology. 2022, 20(1), 122. DOI: 10.1186/s12951-022-01332-w

Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: From biogenesis and secretion to biological function. Immunology Letters. 2006, 107(2), 102-108. DOI: 10.1016/j.imlet.2006.09.005

Wittmann J, Jäck HM. Serum microRNAs as powerful cancer biomarkers. Biochimica et Biophysica Acta. 2010, 1806(2), 200-207. DOI: 10.1016/j.bbcan.2010.07.002

Russo F, Di-Bella S, Nigita G, Macca V, Laganà A, et al. miRandola: Extracellular Circulating MicroRNAs Database. PLoS One. 2012, 7(10), e47786. DOI: 10.1371/journal.pone.0047786

Ziętara KJ, Lejman J, Wojciechowska K, Lejman M. The Importance of Selected Dysregulated microRNAs in Diagnosis and Prognosis of Childhood B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers. 2023, 15(2), 428. DOI: 10.3390/cancers15020428

SiouNing AS, Seong TS, Kondo H, Bhassu S. MicroRNA Regulation in Infectious Diseases and Its Potential as a Biosensor in Future Aquaculture Industry: A Review. Molecules. 2023, 28(11), 4357. DOI: 10.3390/molecules28114357

Soheilifar MH, Nobari S, Hakimi M, Adel B, Masoudi-Khoram N, et al. Current concepts of microRNA-mediated regulatory mechanisms in human pulp tissue-derived stem cells: a snapshot in the regenerative dentistry. Cell and Tissue Research. 2023, 393(2), 229-251. DOI: 10.1007/s00441-023-03792-4

Mullen M, Williams K, LaRocca T, Duke V, Hambright WS, et al. Mechanical strain drives exosome production, function, and miRNA cargo in C2C12 muscle progenitor cells. Journal of Orthopaedic Research. 2023, 41(6), 1186-1197. DOI: 10.1002/jor.25467

Bravo-Vázquez LA, Frías-Reid N, Ramos-Delgado AG, Osorio-Pérez SM, Zlotnik-Chávez HR, et al. MicroRNAs and long non-coding RNAs in pancreatic cancer: From epigenetics to potential clinical applications. Translational Oncology. 2023, 27, 101579. DOI: 10.1016/j.tranon.2022.101579

Dong X, Xing JB, Liu QC, Ye M, Zhou Z, et al. CircPLXNA2 Affects the Proliferation and Apoptosis of Myoblast through circPLXNA2/gga-miR-12207-5P/MDM4 Axis. International Journal of Molecular Sciences. 2023, 24(6), 5459. DOI: 10.3390/ijms24065459

Alieva AM, Teplova NV, Reznik EV, Baikova IE, Akhmedova MF, et al. Current insights into the role of miRNA-125 in cardiovascular disease: potential biological markers and therapeutic targets. Medical Journal of the Russian Federation. 2023, 29(4), 311-324. DOI: 10.17816/medjrf112141

Nassiri SM, Ahmadi-Afshar N, Almasi P. Insight into microRNAs’ involvement in hematopoiesis: current standing point of findings. Stem Cell Research & Therapy. 2023, 14(1), 282. DOI: 10.1186/s13287-023-03504-3

Nasrolahi A, Azizidoost S, Radoszkiewicz K, Najafi S, Ghaedrahmati F, et al. Signaling pathways governing glioma cancer stem cells behavior. Cellular Signalling. 2023, 101, 110493. DOI: 10.1016/j.cellsig.2022.110493

Hasani F, Masrour M, Jazi K, Ahmadi P, Hosseini SS, et al. MicroRNA as a potential diagnostic and prognostic biomarker in brain gliomas: a systematic review and meta-analysis. Frontiers in Neurology. 2024, 15, 1357321. DOI: 10.3389/fneur.2024.1357321

Tluli O, Al-Maadhadi M, Al-Khulaifi AA, Akomolafe AF, Al-Kuwari SY, et al. Exploring the Role of microRNAs in Glioma Progression, Prognosis, and Therapeutic Strategies. Cancers. 2023, 15(17), 4213. DOI: 10.3390/cancers15174213

Jegathesan Y, Stephen PP, Sati ISEE, Narayanan P, Monif M, et al. MicroRNAs in adult high-grade gliomas: Mechanisms of chemotherapeutic resistance and their clinical relevance. Biomedicine and Pharmacotherapy. 2024, 172, 116277. DOI: 10.1016/j.biopha.2024.116277

Liu L, Zhu ZQ, Li X, Zheng Y. DNA methylation-induced ablation of miR-133a accelerates cancer aggressiveness in glioma through upregulating peroxisome proliferator-activated receptor γ. SLAS Discovery. 2023, 28(1), 19-28. DOI: 10.1016/j.slasd.2022.08.004

Wang G, Yang XX, Qi M, Li M, Dong M, et al. Systematic analysis identifies REST as an oncogenic and immunological biomarker in glioma. Scientific Reports. 2023, 13(1), 3023. DOI: 10.1038/s41598-023-30248-0

Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. International Journal of Molecular Sciences. 2023, 24(4), 3521. DOI: 10.3390/ijms24043521

Beylerli O, Shi HZ, Begliarzade S, Shumadalova A, Ilyasova T, et al. MiRNAs as new potential biomarkers and therapeutic targets in brain metastasis. Non-coding RNA Research. 2024, 9(3), 678-686. DOI: 10.1016/j.ncrna.2024.02.014

Sufianov A, Begliarzade S, Ilyasova T, Liang YC, Beylerli O. MicroRNAs as prognostic markers and therapeutic targets in gliomas. Non-coding RNA Research. 2022, 7(3), 171-177. DOI: 10.1016/j.ncrna.2022.07.001

Nikolova E, Laleva L, Milev M, Spiriev T, Stoyanov S, et al. miRNAs and related genetic biomarkers according to the WHO glioma classification: From diagnosis to future therapeutic targets. Non-coding RNA Research. 2024, 9(1), 141-152. DOI: 10.1016/j.ncrna.2023.10.003

Kciuk M, Yahya EB, Mohamed MMI, Abdulsamad MA, Allaq AA, et al. Insights into the Role of LncRNAs and miRNAs in Glioma Progression and Their Potential as Novel Therapeutic Targets. Cancers. 2023, 15(13), 3298. DOI: 10.3390/cancers15133298

Gilyazova I, Ivanova E, Pavlov V, Khasanova G, Khasanova A, et al. Exosomal miRNA-155 and miRNA-146a are promising prognostic biomarkers of the severity of hemorrhagic fever with renal syndrome. Non-coding RNA Research. 2022, 8(1), 75-82. DOI: 10.1016/j.ncrna.2022.10.003

Gareev I, Beylerli O, Tamrazov R, Ilyasova T, Shumadalova A, et al. Methods of miRNA delivery and possibilities of their application in neuro-oncology. Non-coding RNA Research. 2023, 8(4), 661-674. DOI: 10.1016/j.ncrna.2023.10.002

Sufianov A, Beilerli A, Kudriashov V, Ilyasova T, Liang YC, et al. The role of long non-coding RNAs in the development of adipose cells. Non-coding RNA Research. 2023, 8(2), 255-262. DOI: 10.1016/j.ncrna.2023.02.009

Lee Y, Kim M, Han J, Yeom K, Lee S, et al. MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal. 2004, 23(20), 4051-60. DOI: 10.1038/sj.emboj.7600385

Yao YZ, Li YZ, Zhu XY, Zhao CG, Yang LH, et al. The emerging role of the piRNA/PIWI complex in respiratory tract diseases. Respiratory Research. 2023, 24(1), 76. DOI: 10.1186/s12931-023-02367-9

Xiao Y, Liu TM, MacRae IJ. A tiny loop in the Argonaute PIWI domain tunes small RNA seed strength. The EMBO Journal. 2023, 24(6), e55806. DOI: 10.15252/embr.202255806

Wang LL, Song XW, Gu LF, Li X, Cao SY, et al. NOT2 Proteins promote polymerase II-dependent transcription and interact with multiple microRNA biogenesis factors in Arabidopsis. Plant Cell. 2013, 25(2), 715-27. DOI: 10.1105/tpc.112.105882

Jiang GL, Reiter JL, Dong CP, Wang Y, Fang F, et al. Genetic Regulation of Human isomiR Biogenesis. Cancers. 2023, 15(17), 4411. DOI: 10.3390/cancers15174411

Han J, Mendell JT. MicroRNA turnover: a tale of tailing, trimming, and targets. Trends in Biochemical Sciences. 2023, 48(1), 26-39. DOI: 10.1016/j.tibs.2022.06.005

Cifuentes D, Xue HL, Taylor DW, Patnode H, Mishima Y, et al. A novel miRNA processing pathway independent of dicer requires argonaute2 catalytic activity. Science. 2010, 328(5986), 1694-8. DOI: 10.1126/science.1190809

Lee YY, Kim H, Kim VN. Sequence determinant of small RNA production by DICER. Nature. 2023, 615(7951), 323-330. DOI: 10.1038/s41586-023-05722-4

Shortridge MD, Chaubey B, Zhang HJ, Pavelitz T, Vidadala V, et al. Drug-Like Small Molecules That Inhibit Expression of the Oncogenic MicroRNA-21. ACS Chemical Biology. 2023, 18(2), 237-250. DOI: 10.1021/acschembio.2c00502

Zhang HL, Lu RH, Huang JY, Li L, Cao YT, et al. N4-acetylcytidine modifies primary microRNAs for processing in cancer cells. Cellular and Molecular Life Sciences: CMLS. 2024, 81(1), 73. DOI: 10.1007/s00018-023-05107-w

Dadhwal G, Samy H, Bouvette J, El-Azzouzi F, Dagenais P, et al. Substrate promiscuity of Dicer toward precursors of the let-7 family and their 3′-end modifications. Cellular and Molecular Life Sciences: CMLS. 2024, 81(1), 53. DOI: 10.1007/s00018-023-05090-2

Lee YY, Lee H, Kim H, Kim VN, Roh SH. Structure of the human DICER–pre-miRNA complex in a dicing state. Nature. 2023, 615(7951), 331-338. DOI: 10.1038/s41586-023-05723-3

Steeman TJ, Weiner AMJ, David AP, Binolfi A, Calcaterra NB, et al. G-Quadruplexes Regulate miRNA Biogenesis in Live Zebrafish Embryos. International Journal of Molecular Sciences. 2023, 24(5), 4828. DOI: 10.3390/ijms24054828

Jaganathan D, Rajakani R, Doddamani D, Saravanan D, Pulipati S, et al. A conserved SNP variation in the pre-miR396c flanking region in Oryza sativa indica landraces correlates with mature miRNA abundance. Scientific Reports. 2023, 13(1), 2195. DOI: 10.1038/s41598-023-28836-1

Le TNY, Nguyen TA. High-throughput protocol for studying pri-miRNA processing using randomized sequences. STAR Protocols. 2024, 5(1), 102782. DOI: 10.1016/j.xpro.2023.102782

Ye XH, Yang Y, Yao JY, Wang M, Liu YX, et al. Nuclear receptor RXRα binds the precursor of miR-103 to inhibit its maturation. BMC Biology. 2023, 21(1), 197. DOI: 10.1186/s12915-023-01701-3

Larivera S, Neumeier J, Meister G. Post-transcriptional gene silencing in a dynamic RNP world. Biological Chemistry. 2023, 404(11-12), 1051-1067. DOI: 10.1515/hsz-2023-0203

Le CT, Nguyen TD, Nguyen TA. Two-motif model illuminates DICER cleavage preferences. Nucleic Acids Research. 2024, 52(4), 1860-1877. DOI: 10.1093/nar/gkad1186

Vilimova M, Pfeffer S. Post-transcriptional regulation of polycistronic microRNAs. Wiley Interdisciplinary Reviews. RNA. 2023, 14(2), e1749. DOI: 10.1002/wrna.1749

Yıldız A, Hasani A, Hempel T, Köhl N, Beicht A, et al. Trans-amplifying RNA expressing functional miRNA mediates target gene suppression and simultaneous transgene expression. Molecular Therapy. Nucleic Acids. 2024, 35(2), 102162. DOI: 10.1016/j.omtn.2024.102162

Yu AM. Role of microRNAs in the regulation of drug metabolism and disposition. Expert Opinion on Drug Metabolism and Toxicology. 2009, 5(12), 1513-28. DOI: 10.1517/17425250903307448

Chimenti C, Magnocavallo M, Vetta G, Alfarano M, Manguso G, et al. The Role of MicroRNA in the Myocarditis: a Small Actor for a Great Role. Current Cardiology Reports. 2023, 25(7), 641-648. DOI: 10.1007/s11886-023-01888-5

Szakats S, McAtamney A, Wilson MJ. Identification of novel microRNAs in the embryonic mouse brain using deep sequencing. Molecular and Cellular Biochemistry. 2024, 479(2), 297-311. DOI: 10.1007/s11010-023-04730-2

Wang YR, Tang XL, Lu J. Convergent and divergent evolution of microRNA-mediated regulation in metazoans. Biological Reviews of the Cambridge Philosophical Society. 2024, 99(2), 525-545. DOI: 10.1111/brv.13033

Chithung TA, Kansal S, Jajo R, Balyan S, Raghuvanshi S. Understanding the evolution of miRNA biogenesis machinery in plants with special focus on rice. Functional & Integrative Genomics. 2023, 23(1), 30. DOI: 10.1007/s10142-022-00958-1

Son S, Kim B, Yang J, Kim VN. Role of the proline-rich disordered domain of DROSHA in intronic microRNA processing. Genes & Development. 2023, 37(9-10), 383-397. DOI: 10.1101/gad.350275.122

Zhang Y, Yun Z, Gong L, Qu HX, Duan XW, et al. Comparison of miRNA Evolution and Function in Plants and Animals. MicroRNA. 2018, 7(1), 4-10. DOI: 10.2174/2211536607666180126163031

Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes. Plant Cell. 2011, 23(2), 431-42. DOI: 10.1105/tpc.110.082784

Ambros V. The functions of animal microRNAs. Nature. 2004, 431(7006), 350-5. DOI: 10.1038/nature02871

Bağcı Ö, Marzioğlu-özdemir E, Şanlıtürk B. Variant analysis of MiRNA regulatory genes in colorectal cancer. Journal of Health Sciences and Medicine. 2024, 7(1), 98-104. DOI: 10.32322/jhsm.1403868

Shang R, Lai EC. Parameters of clustered suboptimal miRNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2023, 120(41), e2306727120. DOI: 10.1073/pnas.2306727120

Szelągowski A, Kozakiewicz M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson’s Disease. Oxidative Medicine and Cellular Longevity. 2023, 2023, 7759053. DOI: 10.1155/2023/7759053

Ricarte-Filho JC, Casado-Medrano V, Reichenberger E, Spangler Z, Scheerer M, et al. DICER1 RNase IIIb domain mutations trigger widespread miRNA dysregulation and MAPK activation in pediatric thyroid cancer. Frontiers in Endocrinology. 2023, 14, 1083382. DOI: 10.3389/fendo.2023.1083382

Kour S, Fortuna T, Anderson EN, Mawrie D, Bilstein J, et al. Drosha-dependent microRNAs modulate FUS-mediated neurodegeneration in vivo. Nucleic Acids Research. 2023, 51(20), 11258-11276. DOI: 10.1093/nar/gkad774

Bağcı Ö, Özdemir EM, Şanlıtürk B. Variant Analysis of miRNA Regulatory Genes in 35 Sporadic Lung Carcinoma Tumors. Doklady. Biochemistry and Biophysics. 2023, 513(Suppl 1), S1-S7. DOI: 10.1134/S1607672924600052

Wang YM, Chen SY, Ta M, Senz J, Tao LV, et al. Biallelic Dicer1 Mutations in the Gynecologic Tract of Mice Drive Lineage-Specific Development of DICER1 Syndrome–Associated Cancer. Cancer Research. 2023, 83(21), 3517-3528. DOI: 10.1158/0008-5472.CAN-22-3620

Fang T, Wu QQ, Zhou L, Mu S, Fu Q. miR-106b-5p and miR-17-5p suppress osteogenic differentiation by targeting Smad5 and inhibit bone formation. Experimental Cell Research. 2016, 347(1), 74-82. DOI: 10.1016/j.yexcr.2016.07.010

Liu MY, Sun F, Feng YX, Sun XY, Li J, et al. MicroRNA-132-3p represses Smad5 in MC3T3-E1 osteoblastic cells under cyclic tensile stress. Molecular and Cellular Biochemistry. 2019, 458(1-2), 143-157. DOI: 10.1007/s11010-019-03538-3

Shu T, He L, Wang X, Pang M, Yang B, et al. Long noncoding RNA UCA1 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells via miRNA-145-5p/SMAD5 and miRNA-124-3p/SMAD4 axis. Biochemical and Biophysical Research Communications. 2019, 514(1), 316-322. DOI: 10.1016/j.bbrc.2019.04.140

Chen YZ, Zhou Y, Yang H, Li XW, Ding YL, et al. SMAD1 affects the proliferation, apoptosis and migration of colorectal cancer cells by regulating miR-32 expression. Tumor. 2022, (02), 77-92. DOI: 10.3781/j.issn.1000-7431.2022.2012-1148

Liu CY, Zhang YJ, Guo J, Sun W, Ji Y, et al. Overexpression of microRNA-93-5p and microRNA-374a-5p Suppresses the Osteogenic Differentiation and Mineralization of Human Aortic Valvular Interstitial Cells Through the BMP2/Smad1/5/RUNX2 Signaling Pathway. Journal of Cardiovascular Pharmacology. 2023, 82(2), 138-147. DOI: 10.1097/FJC.0000000000001440

Supadmanaba IGP, Mantini G, Randazzo O, Capula M, Muller IB, et al. Interrelationship between miRNA and splicing factors in pancreatic ductal adenocarcinoma. Epigenetics. 2022, 17(4), 381-404. DOI: 10.1080/15592294.2021.1916697

Erdem M, Özgül I, Erson-Bensan AE. HNRNPA1 (Heterogeneous nuclear ribonucleoprotein A1). Atlas of Genetics and Cytogenetics in Oncology and Haematology. 2019, 23(6), 137-142. DOI: 10.4267/2042/70455

Wen J, Ladewig E, Shenker S, Mohammed J, Lai EC. Analysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates. PLoS Computational Biology. 2015, 11(9), e1004441. DOI: 10.1371/journal.pcbi.1004441

Orlans HO, McClements ME, Barnard AR, Martinez-Fernandez de la Camara C, MacLaren RE. Mirtron-mediated RNA knockdown/replacement therapy for the treatment of dominant retinitis pigmentosa. Nature Communications. 2021, 12(1), 4934. DOI: 10.1038/s41467-021-25204-3

Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian Mirtron Genes. Molecular Cell. 2007, 28(2), 328-36. DOI: 10.1016/j.molcel.2007.09.028

Aparicio-Puerta E, Hirsch P, Schmartz GP, Fehlmann T, Keller V, et al. isomiRdb: microRNA expression at isoform resolution. Nucleic Acids Research. 2023, 51(D1), D179-D185. DOI: 10.1093/nar/gkac884

Gómez-Martín C, Aparicio-Puerta E, van Eijndhoven MAJ, Medina JM, Hackenberg M, et al. Reassessment of miRNA variant (isomiRs) composition by small RNA sequencing. Cell Reports Methods. 2023, 3(5), 100480. DOI: 10.1016/j.crmeth.2023.100480

Neilsen CT, Goodall GJ, Bracken CP. IsomiRs - The overlooked repertoire in the dynamic microRNAome. Trends in Genetics: TIG. 2012, 28(11), 544-9. DOI: 10.1016/j.tig.2012.07.005

Talukder A, Zhang WC, Li XM, Hu HY. A deep learning method for miRNA/isomiR target detection. Scientific Reports. 2022, 12(1), 10618. DOI: 10.1038/s41598-022-14890-8

Smith CM, Hutvagner G. A comparative analysis of single cell small RNA sequencing data reveals heterogeneous isomiR expression and regulation. Scientific Reports. 2022, 12(1), 2834. DOI: 10.1038/s41598-022-06876-3

Lukosevicius R, Alzbutas G, Varkalaite G, Salteniene V, Tilinde D, et al. 5′-Isoforms of miR-1246 Have Distinct Targets and Stronger Functional Impact Compared with Canonical miR-1246 in Colorectal Cancer Cells In Vitro. International Journal of Molecular Sciences. 2024, 25(5), 2808. DOI: 10.3390/ijms25052808

Ferre A, Santiago L, Sánchez-Herrero JF, López-Rodrigo O, Sánchez-Curbelo J, et al. 3′IsomiR Species Composition Affects Reliable Quantification of miRNA/isomiR Variants by Poly(A) RT-qPCR: Impact on Small RNA-Seq Profiling Validation. International Journal of Molecular Sciences. 2023, 24(20), 15436. DOI: 10.3390/ijms242015436

Guo L, Ren DK, Zhang YT, Wang QS, Yu SY, et al. A comprehensive pan-cancer analysis reveals cancer-associated robust isomiR expression landscapes in miRNA arm switching. Molecular Genetics and Genomics: MGG. 2023, 298(3), 521-535. DOI: 10.1007/s00438-023-01997-4

Zhiyanov A, Engibaryan N, Nersisyan S, Shkurnikov M, Tonevitsky A. Differential co-expression network analysis with DCoNA reveals isomiR targeting aberrations in prostate cancer. Bioinformatics. 2023, 39(2), btad051. DOI: 10.1093/bioinformatics/btad051

Aiso T, Ueda M. 5’‑isomiR is the most abundant sequence of miR‑1246, a candidate biomarker of lung cancer, in serum. Molecular Medicine Reports. 2023, 27(4), 92. DOI: 10.3892/mmr.2023.12979

Liang TM, Han L, Guo L. Rewired functional regulatory networks among miRNA isoforms (isomiRs) from let-7 and miR-10 gene families in cancer. Computational and Structural Biotechnology Journal. 2020, 18, 1238-1248. DOI: 10.1016/j.csbj.2020.05.001

Soto X, Biga V, Kursawe J, Lea R, Doostdar P, et al. Dynamic properties of noise and Her6 levels are optimized by miR‐9, allowing the decoding of the Her6 oscillator. The EMBO Journal. 2020, 39(12), e103558. DOI: 10.15252/embj.2019103558

Goodfellow M, Phillips NE, Manning C, Galla T, Papalopulu N. MicroRNA input into a neural ultradian oscillator controls emergence and timing of alternative cell states. Nature Communications. 2014, 5, 3399. DOI: 10.1038/ncomms4399

Phillips NE, Manning CS, Pettini T, Biga V, Marinopoulou E, et al. Stochasticity in the miR-9/Hes1 oscillatory network can account for clonal heterogeneity in the timing of differentiation. Elife. 2016, 5, e16118. DOI: 10.7554/eLife.16118

Arvin P, Ghafouri S, Bavarsad K, Hajipour S, Khoshnam SE, et al. Exogenous growth hormone administration during total sleep deprivation changed the microRNA-9 and dopamine D2 receptor expressions followed by improvement in the hippocampal synaptic potential, spatial cognition, and inflammation in rats. Psychopharmacology. 2023, 240(6), 1299-1312. DOI: 10.1007/s00213-023-06369-9

Bamunuarachchi G, Vaddadi K, Yang XY, Dang QJ, Zhu ZY, et al. MicroRNA-9-1 Attenuates Influenza A Virus Replication via Targeting Tankyrase 1. Journal of Innate Immunity. 2023, 15(1), 647-664. DOI: 10.1159/000532063

Li B, Ding T, Chen HY, Li CW, Chen B, et al. CircStrn3 targeting microRNA-9-5p is involved in the regulation of cartilage degeneration and subchondral bone remodelling in osteoarthritis. Bone & Joint Research. 2023, 12(1), 33-45. DOI: 10.1302/2046-3758.121.BJR-2022-0231.R1

Xu JH, Zuo JR, Han CY, Li TT, Jin DX, et al. Proprotein convertase subtilisin/kexin 9 inhibitor downregulates microRNA-130a-3p expression in hepatocytes to alleviates atherosclerosis progression. Naunyn-Schmiedeberg's Archives of Pharmacology. 2024, 397(3), 1727-1736. DOI: 10.1007/s00210-023-02708-x

Walker JC, Harland RM. Expression of microRNAs during embryonic development of Xenopus tropicalis. Gene Expression Patterns: GEP. 2008, 8(6), 452-456. DOI: 10.1016/j.gep.2008.03.002

Jatllon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004, 431(7011), 946-57. DOI: 10.1038/nature03025

Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes & Development. 2005, 19(11), 1288-93. DOI: 10.1101/gad.1310605

Mead EA, Wang YP, Patel S, Thekkumthala AP, Kepich R, et al. miR-9 utilizes precursor pathways in adaptation to alcohol in mouse striatal neurons. Advances in Drug and Alcohol Research. 2023, 3, 11323. DOI: 10.3389/adar.2023.11323

Kuang T, Li LS, Chen YL, Wang JJ. Effects of miR-9-5p on the migration, invasion and epithelial-mesenchymal transition process in cervical squamous cell carcinoma. Journal of Central South University. Medical Sciences. 2023, 48(1), 15-23. DOI: 10.11817/j.issn.1672-7347.2023.210773

Carvajal-Moreno J, Hernandez VA, Wang XY, Li JA, Yalowich JC, et al. Effects of hsa-miR-9-3p and hsa-miR-9-5p on Topoisomerase IIb Expression in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. The Journal of Pharmacology and Experimental Therapeutics. 2023, 384(2), 265-276. DOI: 10.1124/jpet.122.001429

Wang PW, Mao SL, Yi TT, Wang LH. LncRNA MALAT1 Targets miR-9-3p to Upregulate SAP97 in the Hippocampus of Mice with Vascular Dementia. Biochemical Genetics. 2023, 61(3), 916-930. DOI: 10.1007/s10528-022-10289-2

Expression of Concern: MicroRNA-9 inhibits high glucose-induced proliferation, differentiation and collagen accumulation of cardiac fibroblasts by down-regulation of TGFBR2. Bioscience Reports. 2023, 43(1), BSR-2016-0346_EOC. DOI: 10.1042/bsr-2016-0346_eoc

Ukey S, Jain A, Dwivedi S, Choudhury C, Vishnoi JR, et al. Study of MicroRNA (miR-221-3p, miR-133a-3p, and miR-9-5p) Expressions in Oral Submucous Fibrosis and Squamous Cell Carcinoma. Indian Journal of Clinical Biochemistry: IJCB. 2023, 38(1), 73-82. DOI: 10.1007/s12291-022-01035-x

Soto X, Burton J, Manning CS, Minchington T, Lea R, et al. Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development. 2022, 149(19), dev200474. DOI: 10.1242/dev.200474

Hajieghrari B, Farrokhi N. Investigation on the Conserved MicroRNA Genes in Higher Plants. Plant Molecular Biology Reporter. 2021, 39(12), 10-23. DOI: 10.1007/s11105-020-01228-9

Davila JL, Goff LA, Ricupero CL, Camarillo C, Oni EN, et al. A positive feedback mechanism that regulates expression of miR-9 during neurogenesis. PLoS One. 2014, 9(4), e94348. DOI: 10.1371/journal.pone.0094348

Bofill-De Ros X, Kasprzak WK, Bhandari Y, Fan L, Cavanaugh Q, et al. Structural Differences between Pri-miRNA Paralogs Promote Alternative Drosha Cleavage and Expand Target Repertoires. Cell Reports. 2019, 26(2), 447-459.e4. DOI: 10.1016/j.celrep.2018.12.054

Telonis AG, Magee R, Loher P, Chervoneva I, Londin E, et al. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Research. 2017, 45(6), 2973-2985. DOI: 10.1093/nar/gkx082

Wu SJ, Xue QP, Qin XY, Wu XM, Kim P, et al. The Potential Regulation of A-to-I RNA Editing on Genes in Parkinson’s Disease. Genes. 2023, 14(4), 919. DOI: 10.3390/genes14040919

Kumar RS, Sinha H, Datta T, Sharma A, Trivedi PK. Genome-Editing Tools for Engineering of MicroRNAs and Their Encoded Peptides, miPEPs, in Plants. Applications of Genome Engineering in Plants. 2024, 153-176. DOI: 10.1002/9781394183913.ch8

Lu QC, Zhou WH, Fan LG, Ding T, Wang W, et al. Tumor neoantigens derived from RNA editing events show significant clinical relevance in melanoma patients treated with immunotherapy. Anti-cancer Drugs. 2024, 35(3), 305-314. DOI: 10.1097/CAD.0000000000001565

Wan XY, Guo HP, Huang RH, Wang XQ, Zeng LY, et al. The Regulatory Function of ADAR1-mediated RNA Editing in Hematological Malignancies. Progress in Biochemistry Biophysics. 2024, 51(2), 300-308. DOI: 10.16476/j.pibb.2023.0037

de Sousa MC, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ action through miRNA editing. International Journal of Molecular Sciences. 2019, 20(24), 6249. DOI: 10.3390/ijms20246249

Kabekkodu SP, Shukla V, Varghese VK, Adiga D, Vethil Jishnu P, et al. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities. Wiley Interdisciplinary Reviews. RNA. 2020, 11(2), e1563. DOI: 10.1002/wrna.1563

Wang YM, Xu XY, Yu SX, Jeong KJ, Zhou Z, et al. Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Research. 2017, 27(7), 1112-1125. DOI: 10.1101/gr.219741.116

Coolen M, Katz S, Bally-Cuif L. miR-9: A versatile regulator of neurogenesis. Frontiers in Cellular Neuroscience. 2013, 7, 220. DOI: 10.3389/fncel.2013.00220

Nowek K, Wiemer EAC, Jongen-Lavrencic M. The versatile nature of miR-9/9* in human cancer. Oncotarget. 2018, 9(29), 20838-20854. DOI: 10.18632/oncotarget.24889

Yuva-Aydemir Y, Simkin A, Gascon E, Gao FB. MicroRNA-9: Functional evolution of a conserved small regulatory RNA. RNA Biology. 2011, 8(4), 557-64. DOI: 10.4161/rna.8.4.16019

Beclin C, Bosio A, Cremer H. MicroRNAs in Neural Stem Cells. MicroRNA in Regenerative Medicine, Second Edition. 2015, 167-186. DOI: 10.1016/B978-0-12-820719-2.00006-5

Madelaine R, Sloan SA, Huber N, Notwell JH, Leung LC, et al. MicroRNA-9 Couples Brain Neurogenesis and Angiogenesis. Cell Reports. 2017, 20(7), 1533-1542. DOI: 10.1016/j.celrep.2017.07.051

Zhen JW, Zhang HX, Dong HZ, Tong XP. miR-9-3p inhibits glioma cell proliferation and apoptosis by directly targeting FOXG1. Oncology Letters. 2020, 20(2), 2007-2015. DOI: 10.3892/ol.2020.11725

Bonev B, Pisco A, Papalopulu N. MicroRNA-9 Reveals Regional Diversity of Neural Progenitors along the Anterior-Posterior Axis. Developmental Cell. 2011, 20(1), 19-32. DOI: 10.1016/j.devcel.2010.11.018

Moradi Z, Kazemi M, Jamshidi-Khalifelou R, Bahramnia V, Esfandmaz F, et al. CRISPR du-HITI an attractive approach to targeting Long Noncoding RNA HCP5 as inhibitory factor for proliferation of ovarian cancer cell. Functional & Integrative Genomics. 2024, 24(2), 61. DOI: 10.1007/s10142-024-01324-z

Giusti SA, Vogl AM, Brockmann MM, Vercelli CA, Rein ML, et al. MicroRNA-9 controls dendritic development by targeting REST. Elife. 2014, 3, e02755. DOI: 10.7554/eLife.02755

Radhakrishnan B, Alwin Prem Anand A. Role of miRNA-9 in brain development. Journal of Experimental Neuroscience. 2016, 10, 101-120. DOI: 10.4137/JEn.s32843

Wang SL, Jiang GH, Wang SX. Neuroprotective Role of MiRNA-9 in Neurological Diseases: A Mini Review. Current Molecular Medicine. 2023, 23(10), 1007-1011. DOI: 10.2174/1566524023666221025123132

Chen P, Price C, Li ZJ, Li YY, Cao DL, et al. miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia. Proceedings of the National Academy of Sciences of the United States of America. 2013, 110(28), 11511-6. DOI: 10.1073/pnas.1310144110

Denli AM, Cao X, Gage FH. MiR-9 and TLX: Chasing tails in neural stem cells. Nature Structural and Molecular Biology. 2009, 16(4), 346-7. DOI: 10.1038/nsmb0409-346

Zhao CN, Sun GQ, Li SX, Shi YH. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Structural & Molecular Biology. 2009, 16(4), 365-71. DOI: 10.1038/nsmb.1576

Wu WY, Jing YC, Xu Q, Hao J, Yu X. MiR-9 promotes proliferation and inhibits apoptosis of bladder cancer cells via notch signaling pathway. Panminerva Medica. 2023, 65(1), 114-115. DOI: 10.23736/S0031-0808.19.03818-7

Roese-Koerner B, Stappert L, Berger T, Braun NC, Veltel M, et al. Reciprocal Regulation between Bifunctional miR-9/9∗ and its Transcriptional Modulator Notch in Human Neural Stem Cell Self-Renewal and Differentiation. Stem Cell Reports. 2016, 7(2), 207-19. DOI: 10.1016/j.stemcr.2016.06.008

Chen X, Yang F, Zhang TZ, Wang W, Xi WJ, et al. MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma. Journal of Experimental & Clinical Cancer Research: CR. 2019, 38(1), 99. DOI: 10.1186/s13046-019-1078-2

Fan YY, Shi Y, Lin ZH, Huang XX, Li JY, et al. miR-9-5p Suppresses Malignant Biological Behaviors of Human Gastric Cancer Cells by Negative Regulation of TNFAIP8L3. Digestive Diseases and Sciences. 2019, 64(10), 2823-2829. DOI: 10.1007/s10620-019-05626-2

Khosravi A, Alizadeh S, Jalili A, Shirzad R, Saki N. The impact of Mir-9 regulation in normal and malignant hematopoiesis. Oncology Reviews. 2018, 12(1), 348. DOI: 10.4081/oncol.2018.348

Chen L, Hu WF, Li GH, Guo YL, Wan ZH, et al. Inhibition of miR-9-5p suppresses prostate cancer progress by targeting StarD13. Cellular & Molecular Biology Letters. 2019, 24, 20. DOI: 10.1186/s11658-019-0145-1

Liu YJ, Wang C, Zhang CR, Chen RP, Liu BH, et al. Nonenzymatic Multiamplified Electrochemical Detection of Medulloblastoma-Relevant MicroRNAs from Cerebrospinal Fluid. ACS Sensors. 2022, 7(8), 2320-2327. DOI: 10.1021/acssensors.2c00956

Ferretti E, De Smaele E, Po A, Marcotullio L Di, Tosi E, et al. MicroRNA profiling in human medulloblastoma. International Journal of Cancer. 2009, 124(3), 568-77. DOI: 10.1002/ijc.23948

Mollashahi B, Aghamaleki FS, Movafagh A. The Roles of miRNAs in Medulloblastoma: A Systematic Review. Journal of Cancer Prevention. 2019, 24(2), 79-90. DOI: 10.15430/jcp.2019.24.2.79

Yao XH, Xie LS, Zeng Y. MiR-9 Promotes Angiogenesis via Targeting on Sphingosine-1- Phosphate Receptor 1. Frontiers in Cell and Developmental Biology. 2020, 8, 755. DOI: 10.3389/fcell.2020.00755

Tantawy M, Elzayat MG, Yehia D, Taha H. Identification of microRNA signature in different pediatric brain tumors. Genetics and Molecular Biology. 2018, 41(1), 27-34. DOI: 10.1590/1678-4685-gmb-2016-0334

Tan XC, Wang S, Yang B, Zhu LY, Yin B, et al. The CREB-miR-9 Negative Feedback Minicircuitry Coordinates the Migration and Proliferation of Glioma Cells. PLoS One. 2012, 7(1), e49570. DOI: 10.1371/journal.pone.0049570

Zottel A, Šamec N, Kump A, Dall’olio LR, Dominkuš PP, et al. Analysis of miR-9-5p, miR-124-3p, miR-21-5p, miR-138-5p, and miR-1-3p in glioblastoma cell lines and extracellular vesicles. International Journal of Molecular Sciences. 2020, 21(22), 8491. DOI: 10.3390/ijms21228491

Chen XR, Zhang YG, Wang Q. miR-9-5p Mediates ABCC1 to Elevate the Sensitivity of Glioma Cells to Temozolomide. Frontiers in Oncology. 2021, 11, 661653. DOI: 10.3389/fonc.2021.661653

Liu JH, Zhu SL, Tang W, Huang QH, Mei Y, et al. Exosomes from tamoxifen-resistant breast cancer cells transmit drug resistance partly by delivering miR-9-5p. Cancer Cell International. 2021, 21(1), 55. DOI: 10.1186/s12935-020-01659-0

Sporn JC, Katsuta E, Yan L, Takabe K. Expression of microRNA-9 is associated with overall survival in breast cancer patients. The Journal of Surgical Research. 2019, 233, 426-435. DOI: 10.1016/j.jss.2018.08.020

Zhang JB, Cheng J, Zeng ZZ, Wang YF, Li XJ, et al. Comprehensive profiling of novel microRNA-9 targets and a tumor suppressor role of microRNA-9 via targeting IGF2BP1 in hepatocellular carcinoma. Oncotarget. 2015, 6(39), 42040-52. DOI: 10.18632/oncotarget.5969

Wang YK, Dong LF, Wan F, Chen FF, Liu DL, et al. MiR-9-3p regulates the biological functions and drug resistance of gemcitabine-treated breast cancer cells and affects tumor growth through targeting MTDH. Cell Death & Disease. 2021, 12(10), 861. DOI: 10.1038/s41419-021-04145-1

D’Ippolito E, Plantamura I, Bongiovanni L, Casalini P, Baroni S, et al. miR-9 and miR-200 regulate PDGFRβ-mediated endothelial differentiation of tumor cells in triple-negative breast cancer. Cancer Research. 2016, 76(18), 5562-72. DOI: 10.1158/0008-5472.CAN-16-0140

Bao C, Lu YK, Chen JS, Chen DN, Lou WY, et al. Exploring specific prognostic biomarkers in triple-negative breast cancer. Cell Death & Disease. 2019, 10(11), 807. DOI: 10.1038/s41419-019-2043-x

Park S, Eom K, Kim J, Bang H, Wang H young, et al. MiR-9, miR-21, and miR-155 as potential biomarkers for HPV positive and negative cervical cancer. BMC Cancer. 2017, 17(11), 658. DOI: 10.1186/s12885-017-3642-5

Zhao X, Dong WL, Luo GF, Xie J, Liu J, et al. Cervical cancer treatment of Co(II) coordination polymer through miR-9-5p-regulated BRCA1-OCT1-GADD45 pathways. Arabian Journal of Chemistry. 2022, 5, 103713. DOI: 10.1016/j.arabjc.2022.103713

Peitz J, Stockett A, Chawla K, Carvajal DN, Plotkin A, et al. Identifying small non-coding RNAs as biomarkers for cervical cancer. Journal of Clinical Oncology. 2023, 41, 16. DOI: 10.1200/jco.2023.41.16_suppl.e17507

Liu CY, Wang XL, Zhang YZ. The Roles of HK2 on Tumorigenesis of Cervical Cancer. Technology in Cancer Research & Treatment. 2019, 18, 1533033819871306. DOI: 10.1177/1533033819871306

Wei YZ, Jiao XL, Zhang SY, Xu Y, Li S, et al. MiR-9-5p could promote angiogenesis and radiosensitivity in cervical cancer by targeting SOCS5. European Review for Medical and Pharmacological Sciences. 2019, 23(17), 7314-7326. DOI: 10.26355/eurrev_201909_18837

Guo ZY, Huang SC, Zhou YH, Cheng WJ, Chu X, et al. Microrna-9-5p functions as a tumor suppressor in prostate cancer via targeting utrn. EXCLI Journal. 2019, 18. DOI: 10.17179/excli2019-1512

Wang X, Cai J, Zhao L, Zhang DJ, Xu GJ, et al. NUMB suppression by miR-9-5P enhances CD44+ prostate cancer stem cell growth and metastasis. Scientific Reports. 2021, 11(1), 11210. DOI: 10.1038/s41598-021-90700-x

Seashols-Williams SJ, Budd W, Clark GC, Wu Q, Daniel R, et al. MiR-9 acts as an OncomiR in prostate cancer through multiple pathways that drive tumour progression and metastasis. PLoS One. 2016, 11(7), e0159601. DOI: 10.1371/journal.pone.0159601

Sang ZM, Jiang XW, Guo LF, Yin G. MicroRNA‑9 suppresses human prostate cancer cell viability, invasion and migration via modulation of mitogen‑activated protein kinase kinase kinase 3 expression. Molecular Medicine Reports. 2019, 19(5), 4407-4418. DOI: 10.3892/mmr.2019.10065

Bahrami A, Jafari A, Ferns GA. The dual role of microRNA-9 in gastrointestinal cancers: oncomiR or tumor suppressor? Biomedicine and Pharmacotherapy. 2022, 145, 112394. DOI: 10.1016/j.biopha.2021.112394

Gao HY, Huo FC, Wang HY, Pei DS. MicroRNA-9 inhibits the gastric cancer cell proliferation by targeting TNFAIP8. Cell Proliferation. 2017, 50(2), e12331. DOI: 10.1111/cpr.12331

Hang C, Yan HS, Gong C, Gao H, Mao QH, et al. MicroRNA‑9 inhibits gastric cancer cell proliferation and migration by targeting neuropilin‑1. Experimental and Therapeutic Medicine. 2019, 18(4), 2524-2530. DOI: 10.3892/etm.2019.7841

Liu T, Liu Y, Wei CQ, Yang Z, Chang WL, et al. LncRNA HULC promotes the progression of gastric cancer by regulating miR-9-5p/MYH9 axis. Biomed Pharmacother. 2020, 121, 109607. DOI: 10.1016/j.biopha.2019.109607

Cao SQ, Zheng H, Sun BC, Wang ZL, Liu T, et al. Long non-coding rna highly up-regulated in liver cancer promotes exosome secretion. World Journal of Gastroenterology. 2019, 25(35), 5283-5299. DOI: 10.3748/wjg.v25.i35.5283

Bao Y, Zhang YB, Lu YL, Guo HH, Dong ZH, et al. Overexpression of microRNA-9 enhances cisplatin sensitivity in hepatocellular carcinoma by regulating EIF5A2-mediated epithelial–mesenchymal transition. International Journal of Biological Sciences. 2020, 16(5), 827-837. DOI: 10.7150/ijbs.32460

Hadi N, Namazi F, Ketabchi F, Khosravian F, Nateghi B, et al. miR-574, miR-499, miR-125b, miR-106a, and miR-9 potentially target TGFBR-1 and TGFBR-2 genes involving in inflammatory response pathway: Potential novel biomarkers for chronic lymphocytic leukemia. Pathology, Research and Practice. 2022, 238, 154077. DOI: 10.1016/j.prp.2022.154077

Li S, Moffett HF, Lu J, Werner L, Zhang H, et al. Microrna expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells. PLoS One. 2011, 6(3), e16956. DOI: 10.1371/journal.pone.0016956

Chen N, Feng LL, Qu HT, Lu K, Li PP, et al. Overexpression of IL-9 induced by STAT3 phosphorylation is mediated by miR-155 and miR-21 in chronic lymphocytic leukemia. Oncology Reports. 2018, 39(6), 3064-3072. DOI: 10.3892/or.2018.6367

Liu YH, Lei PC, Qiao H, Sun K, Lu XL, et al. MiR-9 enhances the chemosensitivity of AML cells to daunorubicin by targeting the EIF5A2/MCL-1 axis. International Journal of Biological Sciences. 2019, 15(3), 579-586. DOI: 10.7150/ijbs.29775

Zhu BK, Xi XP, Liu QQ, Cheng YY, Yang HP. MiR-9 functions as a tumor suppressor in acute myeloid leukemia by targeting CX chemokine receptor 4. American Journal of Translational Research. 2019, 11(6), 3384-3397. PMCID: PMC6614627

Braoudaki M, Lambrou GI, Giannikou K, Milionis V, Stefanaki K, et al. MicroRNA expression signatures predict patient progression and disease outcome in pediatric embryonal central nervous system neoplasms. Journal of Hematology & Oncology. 2014, 7, 96. DOI: 10.1186/s13045-014-0096-y

Zhang Y, Dai G. Overexpression of microrna-9 inhibits proliferation of human breast cancer cells by targeting stat3. Tropical Journal of Pharmaceutical Research. 2018, 17(9), 1753-1758. DOI: 10.4314/tjpr.v17i9.10

Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. The Journal of Pathology. 2008, 214(1), 17-24. DOI: 10.1002/path.2251

Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D’Ippolito E, et al. Exosome-mediated delivery of miR-9 induces cancer-Associated fibroblast-like properties in human breast fibroblasts. Cell Death & Disease. 2016, 7(7), e2312. DOI: 10.1038/cddis.2016.224

Selcuklu SD, Donoghue MTA, Rehmet K, De Gomes MS, Fort A, et al. MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells. The Journal of Biological Chemistry. 2012, 287(35), 29516-28. DOI: 10.1074/jbc.M111.335943

Tian FX, Ma HF, Zhang Q. Identification of Mir-9 in glioma diagnosis and prognosis. Clinical Laboratory. 2020, 66(7). DOI: 10.7754/Clin.Lab.2019.190914

Zawistowski JS, Nakamura K, Parker JS, Granger DA, Golitz BT, et al. MicroRNA 9-3p Targets β 1 Integrin To Sensitize Claudin-Low Breast Cancer Cells to MEK Inhibition. Molecular and Cellular Biology. 2013, 33(11), 2260-74. DOI: 10.1128/mcb.00269-13

Ma NY, Li XH, Wei H, Zhang HJ, Zhang SL. Circular RNA circNFATC3 acts as a miR-9-5p sponge to promote cervical cancer development by upregulating SDC2. Cellular Oncology. 2021, 44(1), 93-107. DOI: 10.1007/s13402-020-00555-z

Babion I, Jaspers A, van Splunter AP, van der Hoorn IAE, Wilting SM, et al. MiR-9-5p exerts a dual role in cervical cancer and targets transcription factor TWIST1. Cells. 2019, 9(1), 65. DOI: 10.3390/cells9010065

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: a Cancer Journal for Clinicians. 2023, 73(1), 17-48. DOI: 10.3322/caac.21763

Wang L, Lu B, He MJ, Wang YQ, Wang ZP, et al. Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries From 2000 to 2019. Frontiers in Public Health. 2022, 10, 811044. DOI: 10.3389/fpubh.2022.811044

Walter BA, Valera VA, Pinto PA, Merino MJ. Comprehensive microRNA profiling of prostate cancer. Journal of Cancer. 2013, 4(5), 350-7. DOI: 10.7150/jca.6394

Zhang W, Shi CM, Xu Q, Chen XF, Zhu H, et al. Long non-coding RNA MIR22HG suppresses cell proliferation and promotes apoptosis in prostate cancer cells by sponging microRNA-9-3p. Bioengineered. 2022, 13(5), 13108-13117. DOI: 10.1080/21655979.2022.2079244

Wu M, Huang YW, Chen TC, Wang WC, Yang SG, et al. LncRNA MEG3 inhibits the progression of prostate cancer by modulating miR-9-5p/QKI-5 axis. Journal of Cellular and Molecular Medicine. 2019, 23(1), 29-38. DOI: 10.1111/jcmm.13658

Kanwal R, Plaga AR, Liu X, Shukla GC, Gupta S. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Letters. 2017, 407, 9-20. DOI: 10.1016/j.canlet.2017.08.011

Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, et al. Gastric cancer: Epidemiology, prevention, classification, and treatment. Cancer Management and Research. 2018, 10, 239-248. DOI: 10.2147/CMAR.S149619

Drakaki A, Hatziapostolou M, Polytarchou C, Vorvis C, Poultsides GA, et al. Functional microRNA high throughput screening reveals miR-9 as a central regulator of liver oncogenesis by affecting the PPARA-CDH1 pathway. BMC Cancer. 2015, 15, 542. DOI: 10.1186/s12885-015-1562-9

Si T, Huang LY, Liang T, Huang P, Zhang HY, et al. Ruangan Lidan decoction inhibits the growth and metastasis of liver cancer by downregulating miR-9-5p and upregulating PDK4. Cancer Biology & Therapy. 2023, 24(1), 2246198. DOI: 10.1080/15384047.2023.2246198

Rotkrua P, Akiyama Y, Hashimoto Y, Otsubo T, Yuasa Y. MiR-9 downregulates CDX2 expression in gastric cancer cells. International Journal of Cancer. 2011, 129(11), 2611-20. DOI: 10.1002/ijc.25923

Lima JF, Carvalho J, Pinto-Ribeiro I, Almeida C, Wengel J, et al. Targeting miR-9 in gastric cancer cells using locked nucleic acid oligonucleotides. BMC Molecular Biology. 2018, 19(1), 6. DOI: 10.1186/s12867-018-0107-6

Wang LQ, Kwong YL, Kho CSB, Wong KF, Wong KY, et al. Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia - Implications on constitutive activation of NFκB pathway. Molecular Cancer. 2013, 12, 173. DOI: 10.1186/1476-4598-12-173

Price C, Chen P, Li ZJ, Li YY, Wiley A, et al. MLL-Rearranged Acute Myeloid Leukemias Drive Expression Of Mir-9, a Critical Oncogene In Leukemogenesis. Blood. 2013, 122(21), 3740. DOI: 10.1182/blood.v122.21.3740.3740

Tassone P, Di Martino MT, Arbitrio M, Fiorillo L, Staropoli N, et al. Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: a first-in-human, phase 1, open-label, dose-escalation study.Journal of Hematology & Oncology. 2023, 16(1), 68. DOI: 10.1186/s13045-023-01468-8

Jiang XY, Abedi K, Shi JJ. Polymeric nanoparticles for RNA delivery. Encyclopedia of Nanomaterials. 2021. DOI: 10.1016/B978-0-12-822425-0.00017-8

Samad AFA, Kamaroddin MF. Innovative approaches in transforming microRNAs into therapeutic tools. Wiley Interdisciplinary Reviews: RNA. 2023, 14(1), e1768. DOI: 10.1002/wrna.1768

Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, et al. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Non-coding RNA. 2023, 9(2), 27. DOI: 10.3390/ncrna9020027

Rupaimoole R, Slack FJ. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews Drug Discovery. 2017, 16(3), 203-222. DOI: 10.1038/nrd.2016.246

Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, et al. Innovative developments and emerging technologies in RNA therapeutics. RNA Biology. 2022, 19(1), 313-332. DOI: 10.1080/15476286.2022.2027150

Cristina Caroleo M, De Sarro G. Overview of microRNA-based therapeutics. MicroRNA: From Bench to Bedside. 2022, 493-502. DOI: 10.1016/B978-0-323-89774-7.00027-3

Xia SQ, Xu CR, Liu FY, Chen G. Development of microRNA-based therapeutics for central nervous system diseases. European Journal of Pharmacology. 2023, 956, 17956. DOI: 10.1016/j.ejphar.2023.175956

Boloix A, Feiner-Gracia N, Köber M, Repetto J, Pascarella R, et al. Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics. Small. 2022, 18(3), e2101959. DOI: 10.1002/smll.202101959

Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. International Journal of Molecular Sciences. 2024, 25(3), 1469. DOI: 10.3390/ijms25031469

Di Martino MT, Riillo C, Scionti F, Grillone K, Polerà N, et al. Mirnas and lncrnas as novel therapeutic targets to improve cancer immunotherapy. Cancers. 2021, 13(7), 1587. DOI: 10.3390/cancers13071587

Ling H. Non-coding RNAs: Therapeutic strategies and delivery systems. Advances in Experimental Medicine and Biology. 2016, 937, 229-37. DOI: 10.1007/978-3-319-42059-2_12

Ferdows BE, Patel DN, Chen W, Huang XG, Kong N, et al. RNA cancer nanomedicine: nanotechnology-mediated RNA therapy. Nanoscale. 2022, 14(12), 4448-4455. DOI: 10.1039/d1nr06991h

Lin YX, Wang Y, Blake S, Yu M, Mei L, et al. RNA nanotechnology-mediated cancer immunotherapy. Theranostics. 2020, 10(1), 281-299. DOI: 10.7150/thno.35568

Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, et al. MicroRNA delivery through nanoparticles. Journal of Controlled Release. 2019, 313, 80-95. DOI: 10.1016/j.jconrel.2019.10.007

Fresacher-Scheiber K, Ruseska I, Siboni H, Reiser M, Falsone F, et al. Modified Stability of microRNA-Loaded Nanoparticles. Pharmaceutics. 2022, 14(9), 1829. DOI: 10.3390/pharmaceutics14091829

Sufian MA, Ilies MA. Lipid-based nucleic acid therapeutics with in vivo efficacy. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 2023, 15(2), e1856. DOI: 10.1002/wnan.1856

Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews. 2016, 99, 129-137. DOI: 10.1016/j.addr.2016.01.022

Mohammadian F, Pilehvar-Soltanahmadi Y, Zarghami F, Akbarzadeh A, Zarghami N. Upregulation of miR-9 and Let-7a by nanoencapsulated chrysin in gastric cancer cells. Artificial Cells, Nanomedicine, and Biotechnology. 2017, 45(6), 1-6. DOI: 10.1080/21691401.2016.1216854

Wu Y, Tang YX, Xie SZ, Zheng XX, Zhang SF, et al. Chimeric peptide supramolecular nanoparticles for plectin-1 targeted miRNA-9 delivery in pancreatic cancer. Theranostics. 2020, 10(3), 1151-1165. DOI: 10.7150/thno.38327

MacDonagh L, Gallagher MF, Ffrench B, Gasch C, Gray SG, et al. MicroRNA expression profiling and biomarker validation in treatment-naïve and drug resistant non-small cell lung cancer. Translational Lung Cancer Research. 2021, 10(4), 1773-1791. DOI: 10.21037/tlcr-20-959

Yan H, Tang SJ, Tang SJ, Zhang J, Guo HY, et al. miRNAs in anti-cancer drug resistance of non-small cell lung cancer: Recent advances and future potential. Frontiers in Pharmacology. 2022, 13, 949566. DOI: 10.3389/fphar.2022.949566

Wei YF, Lai XF, Yu ST, Chen S, Ma YZ, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Research and Treatment. 2014, 147(2), 423-31. DOI: 10.1007/s10549-014-3037-0

Li Y, Zhao LF, Li NN, Miao Y, Zhou HM, et al. MiR-9 regulates the multidrug resistance of chronic myelogenous leukemia by targeting ABCB1. Oncology Reports. 2017, 37(4), 2193-2200. DOI: 10.3892/or.2017.5464

Zhao HM, Wei W, Sun YH, Gao JH, Wang Q, et al. MicroRNA-9 promotes tumorigenesis and mediates sensitivity to cisplatin in primary epithelial ovarian cancer cells. Tumour Biology. 2015, 36(9), 6867-73. DOI: 10.1007/s13277-015-3399-x

Li QL, Chang YN, Mu LY, Song YW. MicroRNA-9 enhances chemotherapy sensitivity of glioma to TMZ by suppressing TOPO II via the NF-κB signaling pathway. Oncology Letters. 2019, 17(6), 4819-4826. DOI: 10.3892/ol.2019.10158

Kania EE, Carvajal-Moreno J, Hernandez VA, English A, Papa JL, et al. Hsa-miR-9-3p and hsa-miR-9-5p as Post-Transcriptional Modulators of DNA Topoisomerase IIa in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. Molecular Pharmacology 2020, 97(3), 159-170. DOI: 10.1124/MOL.119.118315

Downloads

Published

2025-04-08

How to Cite

Mahmoud Ibrahim, Maryam Abdul-Kader, Ava Azizi, Evan Schneider, Gabriel Salyer, Jill Ivory, … Adams, B. D. (2025). The miRNA-9 Isoform Story in Cancer: An OncomiR or Tumor Suppressor?. Journal of Cancer Biomoleculars and Therapeutics, 2(2), 13–36. https://doi.org/10.62382/jcbt.v2i2.53

Issue

Section

Articles