Exploring Ferroptosis and Epigenetic Regulation in Gynecological Cancers: Implications for Treatment Strategies

Authors

  • Vajihe Hazari Department of Obstetrics and Gynecology, School of Medicine, Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran
  • Leila Shahsavari Department of obstetrics and gynecology, School of medicine, Shariati hospital, Tehran university of medical sciences, Tehran, Iran
  • Farzad Sadri Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran

DOI:

https://doi.org/10.62382/jcbt.v2i2.59

Keywords:

Gynecological cancers, Ferroptosis, Epigenetic regulation, Non-coding RNAs, Cancer therapy

Abstract

Gynecological malignancies, particularly cervical, ovarian, and endometrial cancers, provide considerable worldwide health challenges due to the increasing incidence of new cases and mortality. Iron-dependent lipid peroxidation, a regulated process of cell death, has emerged as a highly promising focus for cancer clinical treatment. This article presents a thorough analysis of the many processes involved in ferroptosis, focusing specifically on the influence of epigenetic control, which includes histone modification, DNA methylation, non-coding RNAs (ncRNAs), and RNA modifications such as N6-methylcytosine (m6C). Recent findings clarify the complex interactions between epigenetic variables and the expression of genes associated with ferroptosis, which in turn affect the survival, proliferation, and response to treatment of gynecological cancers. Ferroptosis is strongly influenced by epigenetic control, which may lead to better management of gynecological malignancies. More effective treatments for endometrial, ovarian, and cervical malignancies may result from focusing on processes including histone modification, DNA methylation, and non-coding RNAs. Applying these discoveries to improve clinical outcomes and lower mortality should be the main goal of future initiatives.

Downloads

Download data is not yet available.

References

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: a Cancer Journal for Clinicians. 2023, 73(1), 17-48. DOI: 10.3322/caac.21763

Vakili-Ojarood M, Naseri A, Shirinzadeh-Dastgiri A, Saberi A, HaghighiKian SM, et al. Ethical Considerations and Equipoise in Cancer Surgery. Indian Journal of Surgical Oncology. 2024, 15(3), 363-373. DOI: 10.1007/s13193-024-02023-8

Zhang YT, Luo GF, Li MJ, Guo P, Xiao YJ, et al. Global patterns and trends in ovarian cancer incidence: age, period and birth cohort analysis. BMC Cancer. 2019, 19(1), 984. DOI: 10.1186/s12885-019-6139-6

Guy H, Walder L, Fisher M. Cost-effectiveness of niraparib versus routine surveillance, olaparib and rucaparib for the maintenance treatment of patients with ovarian cancer in the United States. Pharmacoeconomics. 2019, 37(3), 391-405. DOI: 10.1007/s40273-018-0745-z

Nie J, Wu HN, Sun L, Ding YJ, Luan YP, et al. Cost-effectiveness of fuzuloparib compared to routine surveillance, niraparib and olaparib for maintenance treatment of patients with germline BRCA1/2 mutation and platinum-sensitive recurrent ovarian carcinoma in China. Frontiers in Pharmacology. 2023, 13, 987337. DOI: 10.3389/fphar.2022.987337

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012, 149(5), 1060-1072. DOI: 10.1016/j.cell.2012.03.042

Jiang L, Kon N, Li T, Wang SJ, Su T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015, 520(7545), 57-62. DOI: 10.1038/nature14344

Chen DL, Tavana O, Chu B, Erber L, Chen Y, et al. NRF2 is a major target of ARF in p53-independent tumor suppression. Molecular Cell. 2017, 68(1), 224-232. DOI: 10.1016/j.molcel.2017.09.009

Yang ML, Luo HS, Yi X, Wei X, Jiang DS. The epigenetic regulatory mechanisms of ferroptosis and its implications for biological processes and diseases. MedComm. 2023, 4(3), e267. DOI: 10.1002/mco2.267

Wang WW, Cai J, Wen JY, Li XY, Yu YJ, et al. Boosting ferroptosis via abplatin (iv) for treatment of platinum-resistant recurrent ovarian cancer. Nano Today. 2022, 44, 101459. DOI: 10.1016/j.nantod.2022.101459

Yang X, Yu YJ, Huang X, Chen QX, Wu H, et al. Delivery of platinum (II) drugs with bulky ligands in trans-geometry for overcoming cisplatin drug resistance. Materials Science and Engineering: C. 2019, 96, 96-104. DOI: 10.1016/j.msec.2018.10.092

Yu BZ, Wang YS, Bing TJ, Tang YJ, Huang J, et al. Platinum prodrug nanoparticles with COX‐2 inhibition amplify pyroptosis for enhanced chemotherapy and immune activation of pancreatic cancer. Advanced Materials. 2024, 36(11), e2310456. DOI: 10.1002/adma.202310456

Tang SL, Chen L. The recent advancements of ferroptosis of gynecological cancer. Cancer Cell International. 2024, 24(1), 351. DOI: 10.1186/s12935-024-03537-5

Xu J, Zheng BH, Wang W, Zhou ST. Ferroptosis: a novel strategy to overcome chemoresistance in gynecological malignancies. Frontiers in Cell and Developmental Biology. 2024, 12, 1417750. DOI: 10.3389/fcell.2024.1417750

Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019, 571(7766), 489-499. DOI: 10.1038/s41586-019-1411-0

Deans C, Maggert KA. What do you mean,“epigenetic”? Genetics. 2015, 199(4), 887-896. DOI: 10.1534/genetics.114.173492

Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012, 150(1), 12-27. DOI: 10.1016/j.cell.2012.06.013

Cao J, Yan Q. Cancer epigenetics, tumor immunity, and immunotherapy. Trends in Cancer. 2020, 6(7), 580-592. DOI: 10.1016/j.trecan.2020.02.003

Twiddy D, Cohen GM, Macfarlane M, Cain K. Caspase-7 is directly activated by the similar to 700-kDa apoptosome complex and is released as a stable XIAP-caspase-7 similar to 200-kDa complex. The Journal of Biological Chemistry. 2006, 281(7), 3876-3888. DOI: 10.1074/jbc.M507393200

Shi JJ, Zhao Y, Wang K, Shi XY, Wang Y, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015, 526(7575), 660-665. DOI: 10.1038/nature15514

Sun LM, Wang HY, Wang ZG, He SD, Chen S, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012, 148(1), 213-227. DOI: 10.1016/j.cell.2011.11.031

Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022, 185(14), 2401-2421. DOI: 10.1016/j.cell.2022.06.003

Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021, 184(1), 149-168. DOI: 10.1016/j.cell.2020.11.025

Zhou BR, Liu J, Kang R, Klionsky DJ, Kroemer G, et al., Ferroptosis is a type of autophagy-dependent cell death. Seminars in Cancer Biology. 2020, 68, 89-100. DOI: 10.1016/j.semcancer.2019.03.002

Wu J, Wang Y, Jiang RT, Xue R, Yin XH, et al. Ferroptosis in liver disease: new insights into disease mechanisms. Cell Death Discovery. 2021, 7(1), 276. DOI: 10.1038/s41420-021-00660-4

Le YF, Zhang ZJ, Wang C, Lu DZ. Ferroptotic cell death: new regulatory mechanisms for metabolic diseases. Endocrine, Metabolic & Immune Disorders-Drug Targets. 2021, 21(5), 785-800. DOI: 10.2174/1871530320666200731175328

Forcina GC, Dixon SJ. Dixon. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 2019, 19(18), e1800311. DOI: 10.1002/PMIc.201800311

Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis. International Journal of Molecular Sciences. 2022, 24(1), 449. DOI: 10.3390/ijms24010449

Xiang SS, Yan W, Ren X, Feng JB, Zu XY. Role of ferroptosis and ferroptosis-related long non'coding RNA in breast cancer. Cellular & Molecular Biology Letters. 2024, 29(1), 40. DOI: 10.1186/s11658-024-00560-2

Daher B, Vučetić M, Pouysségur J. Cysteine depletion, a key action to challenge cancer cells to ferroptotic cell death. Frontiers in Oncology. 2020, 10, 723. DOI: 10.3389/fonc.2020.00723

Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, et al. The cystine/glutamate antiporter system xc− in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxidants & Redox Signaling. 2013, 18(5), 522-555. DOI: 10.1089/ars.2011.4391

Maiorino M, Conrad M, Ursini F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxidants & Redox Signaling. 2018, 29(1), 61-74. DOI: 10.1089/ars.2017.7115

Nguyen THP, Mahalakshmi B, Velmurugan BK. Functional role of ferroptosis on cancers, activation and deactivation by various therapeutic candidates-an update. Chemico-Biological Interactions. 2020, 317, 108930. DOI: 10.1016/j.cbi.2019.108930

Girotti AW. Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. Journal of Photochemistry and Photobiology B: Biology. 2001, 63(1-3), 103-113. DOI: 10.1016/s1011-1344(01)00207-x

Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radical Biology and Medicine. 2020, 152, 175-185. DOI: 10.1016/j.freeradbiomed.2020.02.027

Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radical Biology and Medicine. 2009, 47(5), 469-484. DOI: 10.1016/j.freeradbiomed.2009.05.032

Zhao SN, Guo Y, Yin XZ. Lipid peroxidation in ferroptosis and association with nonalcoholic fatty liver disease. Frontiers in Bioscience-Landmark. 2023, 28(12), 332. DOI: 10.31083/j.fbl2812332

Zhao YC, Li YQ, Zhang RF, Wang F, Wang TJ, et al. The role of erastin in ferroptosis and its prospects in cancer therapy. OncoTargets and Therapy. 2020, 13, 5429-5441. DOI: 10.2147/OTT.S254995

Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2012, 1823(10), 1767-1777. DOI: 10.1016/j.bbamcr.2012.06.019

Ding KY, Liu CB, Li L, Yang M, Jiang N, et al. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism. Chinese Medical Journal. 2023, 136(21), 2521-2537. DOI: 10.1097/CM9.0000000000002533

Chen FQ, Kang R, Liu J, Tang DL. The ACSL4 network regulates cell death and autophagy in diseases. Biology. 2023, 12(6), 864. DOI: 10.3390/biology12060864

Luo MH, Yan JJ, Hu XY, Li HL, Li HS, et al. Targeting lipid metabolism for ferroptotic cancer therapy. Apoptosis: an International Journal on Programmed Cell Death. 2023, 28(1-2), 81-107. DOI: 10.1007/s10495-022-01795-0

Lu LX, Jifu CL, Xia J, Wang JT. E3 ligases and DUBs target ferroptosis: A potential therapeutic strategy for neurodegenerative diseases. Biomedicine & Pharmacotherapy. 2024, 175, 116753. DOI: 10.1016/j.biopha.2024.116753

Cheng H, Wang M, Su JJ, Li YY, Long J, et al. Lipid metabolism and cancer. Life. 2022, 12(6), 784. DOI: 10.3390/life12060784

Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Progress in Lipid Research. 2019, 73, 28-45. DOI: 10.1016/j.plipres.2018.11.001

Lin Z, Liu J, Kang R, Yang MH, Tang DL. Lipid metabolism in ferroptosis. Advanced Biology. 2021, 5(8), 2100396. DOI: 10.1002/ADBI.202100396

Ma LL, Liang L, Zhou D, Wang SW. Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4. Neoplasma. 2021, 68(1), 165-173. DOI: 10.4149/neo_2020_200707N705

Cheng JM, Yu QL, Li JX, Xu ZY, Li JH, et al. Intrinsic tumor-targeted murine Ferritin nanocage co-delivers GPX4 and FSP1 inhibitors for synergistic ferroptosis-immunotherapy. Nano Today. 2024, 58, 102411. DOI: 10.1016/j.nantod.2024.102411

Liu M, Kong XY, Yao Y, Wang XA, Yang W, et al. The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review. Annals of Translational Medicine. 2022, 10(6), 368. DOI: 10.21037/atm-21-6942

Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019, 575(7784), 693-698. DOI: 10.1038/s41586-019-1707-0

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019, 575(7784), 688-692. DOI: 10.1038/s41586-019-1705-2

Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994, 73(8), 2013-2026. DOI: 10.1002/1097-0142(19940415)73:8<2013::aid-cncr2820730802>3.0.co;2-j

Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nature Reviews Cancer. 2005, 5(9), 726-734. DOI: 10.1038/nrc1692

Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clinical Cancer Research. 2007, 13(24), 7271-7279. DOI: 10.1158/1078-0432

Bano I, Horky P, Abbas SQ, Majid M, Bilal AHM, et al. Ferroptosis: a new road towards cancer management. Molecules. 2022, 27(7), 2129. DOI: 10.3390/molecules27072129

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014, 156(1-2), 317-331. DOI: 10.1016/j.cell.2013.12.010

Huang Y, Dai Z, Barbacioru C, Sadée W. Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Research. 2005, 65(16), 7446-7454. DOI: 10.1158/0008-5472.CAN-04-4267

Liu XX, Li XJ, Zhang B, Liang YJ, Zhou CX, et al. MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Letters. 2011, 585(9), 1363-1367. DOI: 10.1016/j.febslet.2011.04.018

Wang YF, Yang L, Zhang XJ, Cui W, Liu YP, et al. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Reports. 2019, 20(7), e47563. DOI: 10.15252/embr.201847563

Kremer DM, Nelson BS, Lin L, Yarosz EL, Halbrook CJ, et al. GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis. Nature Communications. 2021, 12(1), 4860. DOI: 10.1038/s41467-021-24859-2

Lu YQ, Qin HX, Jiang B, Lu WF, Hao J, et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Letters. 2021, 522, 1-13. DOI: 10.1016/J.CANlet.2021.09.014

Qin X, Zhang J, Lin Y, Sun XM, Zhang JN, et al. Identification of MiR-211-5p as a tumor suppressor by targeting ACSL4 in Hepatocellular Carcinoma. Journal of Translational Medicine. 2020, 18, 1-13. DOI: 10.1186/s12967-020-02494-7

Feng L, Zhao KK, Sun LC, Yin XY, Zhang JP, et al. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. Journal of Translational Medicine. 2021, 19(1), 376. DOI: 10.1186/s12967-021-03042-7

Xu FS, Guan YB, Xue L, Zhang P, Li MR, et al. The roles of ferroptosis regulatory gene SLC7A11 in renal cell carcinoma: A multi‐omics study. Cancer Medicine. 2021, 10(24), 9078-9096. DOI: 10.1002/cam4.4395

Lu D, Yang ZY, Xia QY, Gao SJ, Sun SF, et al. ACADSB regulates ferroptosis and affects the migration, invasion, and proliferation of colorectal cancer cells. Cell Biology International. 2020, 44(11), 2334-2343. DOI: 10.1002/cbin.11443

Lei G, Zhang YL, Koppula P, Liu XG, Zhang J, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Research. 2020, 30(2), 146-162. DOI: 10.1038/S41422-019-0263-3

Chu B, Kon N, Chen DL, Li TY, Liu T, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nature Cell Biology. 2019, 21(5), 579-591. DOI: 10.1038/S41556-019-0305-6

Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JI, et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes & Development. 2016, 30(8), 918-930. DOI: 10.1101/Gad.275891.115

Leu JI, Murphy ME, George DL. Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proceedings of the National Academy of Sciences. 2019, 116(17), 8390-8396. DOI: 10.1073/pnas.1821277116

Wang SJ, Li DW, Ou Y, Jiang L, Chen Y, et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Reports. 2016, 17(2), 366-373. DOI: 10.1016/j.celrep.2016.09.022

Zhang YL, Shi JJ, Liu XG, Feng L, Gong ZH, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nature Cell Biology. 2018, 20(10), 1181-1192. DOI: 10.1038/s41556-018-0178-0

Ranjbaran J, Safarpour H, Nomiri S, Tavakoli T, Rezaei Z, et al. Experimental validation of in silico analysis estimated the reverse effect of upregulated hsa-miR-106a-5p and hsa-miR-223-3p on gene expression in Iranian patients with colorectal adenocarcinoma by RT-qPCR. Cancer Medicine. 2023, 12(6), 7005-7018. DOI: 10.1002/cam4.5499

Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genetics. 2002, 30(4), 406-10. DOI: 10.1038/ng849

Lee JE, Wang CC, Xu SY, Cho YW, Wang LF, et al. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife. 2013, 2, e01503. DOI: 10.7554/eLife.01503

Scalera S, Mazzotta M, Cortile C, Krasniqi E, De Maria R, et al. KEAP1-Mutant NSCLC: The Catastrophic Failure of a Cell-Protecting Hub. Journal of Thoracic Oncology. 2022, 17(6), 751-757. DOI: 10.1016/j.jtho.2022.03.011

Dai E, Han L, Liu J, Xie YC, Zeh HJ, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nature Communications. 2020, 11(1), 6339. DOI: 10.1038/s41467-020-20154-8

Ma XZ, Xiao LL, Liu LT, Ye LQ, Su P, et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metabolism. 2021, 33(5), 1001-1012. DOI: 10.1016/j.cmet.2021.02.015

Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 2015, 27(2), 211-22. DOI: 10.1016/j.ccell.2014.11.019

Anasagasti MJ, Martin JJ, Mendoza L, Obrador E, Estrela JM, et al. Glutathione protects metastatic melanoma cells against oxidative stress in the murine hepatic microvasculature. Hepatology (Baltimore, Md.). 1998, 27(5), 1249-56. DOI: 10.1002/hep.510270510

Estrela JM, Ortega A, Mena S, Sirerol JA, Obrador E. Glutathione in metastases: From mechanisms to clinical applications. Critical Reviews In Clinical Laboratory Sciences. 2016, 53(4), 253-67. DOI: 10.3109/10408363.2015.1136259

Yang C, Chen Z, Wei M, Hu S, Cai MY, et al. A self-amplified ferroptosis nanoagent that inhibits the tumor upstream glutathione synthesis to reverse cancer chemoresistance. Journal of Controlled Release. 2023, 357, 20-30. DOI: 10.1016/j.jconrel.2023.03.030

Du J, Zhou Y, Li YC, Xia J, Chen YJ, et al. Identification of Frataxin as a regulator of ferroptosis. Redox Biology. 2020, 32, 101483. DOI: 10.1016/j.redox.2020.101483

Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, et al. Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export. Developmental Cell. 2019, 51(5), 575-586. DOI: 10.1016/j.devcel.2019.10.007

Xie YZ, Wang BY, Zhao YN, Tao ZH, Wang Y, et al. Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis. Journal Of Hematology & Oncology. 2022, 15(1), 72. DOI: 10.1186/s13045-022-01297-1

Belavgeni A, Tonnus W, Linkermann A. Cancer cells evade ferroptosis: sex hormone-driven membrane-bound O-acyltransferase domain-containing 1 and 2 (MBOAT1/2) expression. Signal Transduction and Targeted Therapy. 2023, 8(1), 336. DOI: 10.1038/s41392-023-01593-3

Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Molecular Medicine. 2021, 13(12), e14351. DOI: 10.15252/emmm.202114351

Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, et al. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. 2017, 36(40), 5593-5608. DOI: 10.1038/onc.2017.146

Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biology. 2019, 23, 101107. DOI: 10.1016/j.redox.2019.101107

Singh MK, Han S, Kim S, Kang I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. International Journal of Molecular Sciences. 2024, 25(20), 11185. DOI: 10.3390/ijms252011185

Guo ZW, Wang S, Hao HF, Deng XX, Fu JL, et al. Targeting Ferroptosis in Cancer by Natural Products: An Updated Review. The American Journal of Chinese Medicine. 2023, 51(3), 547-574. DOI: 10.1142/S0192415X23500271

Yamaguchi H, Hsu JL, Chen CT, Wang YN, Hsu MC, et al. Caspase-independent cell death is involved in the negative effect of egf receptor inhibitors on cisplatin in non–small cell lung cancer cells. Clinical Cancer Research. 2013, 19(4), 845-854. DOI: 10.1158/1078-0432.CCR-12-2621

Chen LY, Li XX, Liu LB, Yu B, Xue YX, et al. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncology Reports. 2015, 33(3), 1465-1474. DOI: 10.3892/or.2015.3712

Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014, 3, e02523. DOI: 10.7554/eLife.02523

Magri J, Gasparetto A, Conti L, Calautti E, Cossu C, et al. Tumor-associated antigen xCT and mutant-p53 as molecular targets for new combinatorial antitumor strategies. Cells. 2021, 10(1), 108. DOI: 10.3390/cells10010108

Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, et al. System Xc-/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Frontiers in Pharmacology. 2022, 13, 910292. DOI: 10.3389/fphar.2022.910292

Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Letters. 2015, 356(2 Pt B), 971-977. DOI: 10.1016/j.canlet.2014.11.014

Fu R, Zhao BR, Chen M, Fu XL, Zhang Q, et al. Moving beyond cisplatin resistance: Mechanisms, challenges, and prospects for overcoming recurrence in clinical cancer therapy. Medical Oncology. 2023, 41(1), 9. DOI: 10.1007/s12032-023-02237-w

Wei YP, Lv HH, Shaikh AB, Han W, Hou H, et al. Directly targeting glutathione peroxidase 4 may be more effective than disrupting glutathione on ferroptosis-based cancer therapy. Biochimica et Biophysica Acta (BBA)-General Subjects. 2020, 1864(4), 129539. DOI: 10.1016/j.bbagen.2020.129539

Nengroo MA, Sinha A, Datta D, Iron Vulnerability of Cancer Stem Cells: Role of ROS and Beyond. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. 2022, 2509-2537. DOI:10.1007/978-981-16-5422-0_235

Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH, et al. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Letters. 2018, 416, 124-137. DOI: 10.1016/j.canlet.2017.12.025

Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nature Chemical Biology. 2018, 14(5), 507-515. DOI: 10.1038/s41589-018-0031-6

Yue LD, Dai ZC, Chen X, Liu CM, Hu ZF, et al. Development of a novel FePt-based multifunctional ferroptosis agent for high-efficiency anticancer therapy. Nanoscale. 2018, 10(37), 17858-17864. DOI: 10.1039/c8nr05150j

Ma PA, Xiao HH, Yu C, Liu JH, Cheng ZY, et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Letters. 2017, 17(2), 928-937. DOI: 10.1021/acs.nanolett.6b04269

Liu T, Liu WL, Zhang MK, Yu WY, Gao F, et al. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano. 2018, 12(12), 12181-12192. DOI: 10.1021/acsnano.8b05860

Wang SF, Li FY, Qiao RR, Hu X, Liao HW, et al. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano. 2018, 12(12), 12380-12392. DOI: 10.1021/acsnano.8b06399

Wen RJ, Dong X, Zhuang HW, Pang FX, Ding SC, et al. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology. 2023, 116, 154881. DOI: 10.1016/j.phymed.2023.154881

Liu X, Peng XH, Cen S, Yang CT, Ma ZJ, et al. Wogonin induces ferroptosis in pancreatic cancer cells by inhibiting the Nrf2/GPX4 axis. Frontiers in Pharmacology. 2023, 14, 1129662. DOI: 10.3389/fphar.2023.1129662

Cui WQ, Zhang JW, Wu DQ, Zhang JX, Zhou H, et al. Ponicidin suppresses pancreatic cancer growth by inducing ferroptosis: Insight gained by mass spectrometry-based metabolomics. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology. 2022, 98, 153943. DOI: 10.1016/j.phymed.2022.153943

Zhang W, Jiang BP, Liu YX, Xu L, Wan M. Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4. Free Radical Biology and Medicine. 2022, 180, 75-84. DOI: 10.1016/j.freeradbiomed.2022.01.009

Zhou C, Yu T, Zhu R, Lu J, Ouyang X, et al. Timosaponin AIII promotes non-small-cell lung cancer ferroptosis through targeting and facilitating HSP90 mediated GPX4 ubiquitination and degradation. International Journal of Biological Sciences. 2023, 19(5), 1471-1489. DOI: 10.7150/ijbs.77979

Kang LC, Wang DK, Shen TY, Liu X, Dai B, et al. PDIA4 confers resistance to ferroptosis via induction of ATF4/SLC7A11 in renal cell carcinoma. Cell Death & Disease. 2023, 14(3), 193. DOI: 10.1038/s41419-023-05719-x

Fan GH, Wei XY, Xu X. Is the era of sorafenib over? A review of the literature. Therapeutic Advances in Medical Oncology. 2020, 12, 1758835920927602. DOI: 10.1177/1758835920927602

Xu X, Li YX, Wu YL, Wang ML, Lu YD, et al. Increased ATF2 expression predicts poor prognosis and inhibits sorafenib-induced ferroptosis in gastric cancer. Redox Biology. 2023, 59, 102564. DOI: 10.1016/j.redox.2022.102564

Feng SJ, Tang D, Wang YC, Li X, Bao H, et al. The mechanism of ferroptosis and its related diseases. Molecular Biomedicine. 2023, 4(1), 33. DOI: 10.1186/s43556-023-00142-2

Li X, Wu LL, Tian X, Zheng WP, Yuan MS, et al. miR‐29a‐3p in Exosomes from Heme Oxygenase‐1 Modified Bone Marrow Mesenchymal Stem Cells Alleviates Steatotic Liver Ischemia‐Reperfusion Injury in Rats by Suppressing Ferroptosis via Iron Responsive Element Binding Protein 2. Oxidative Medicine and Cellular Longevity. 2022, 2022, 6520789. DOI: 10.1155/2022/6520789

Patnaik MM, Tefferi A. Myelodysplastic syndromes with ring sideroblasts (MDS‐RS) and MDS/myeloproliferative neoplasm with RS and thrombocytosis (MDS/MPN-RS-T)-“2021 update on diagnosis, risk‐stratification, and management”. American Journal of Hematology. 2021, 96(3), 379-394. DOI: 10.1002/ajh.26090

Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomedicine & Pharmacotherapy. 2021, 139, 111708. DOI: 10.1016/j.biopha.2021.111708

Blackledge NP, Klose R. CpG island chromatin: a platform for gene regulation. Epigenetics. 2011, 6(2), 147-152. DOI: 10.4161/epi.6.2.13640

Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, et al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genetics. 2010, 6(9), e1001134. DOI: 10.1371/journal.pgen.1001134

Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews. Genetics. 2018, 19(6), 371-384. DOI: 10.1038/s41576-018-0004-3

Macková E, Hrušková K, Bendová P, Vávrová A, Jansová H, et al. Methyl and ethyl ketone analogs of salicylaldehyde isonicotinoyl hydrazone: novel iron chelators with selective antiproliferative action. Chemico-Biological Interactions. 2012, 197(2-3), 69-79. DOI: 10.1016/j.cbi.2012.03.010

Yang WC, Lin SF, Wang SC, Tsai WC, Wu CC, et al. The effects of human BDH2 on the cell cycle, differentiation, and apoptosis and associations with leukemia transformation in myelodysplastic syndrome. International Journal of Molecular Sciences. 2020, 21(9), 3033. DOI: 10.3390/ijms21093033

Yu LJ, Gao ZW, Li ZY, Liu P, Gao Y, et al. Identification of ferroptosis-related molecular subtypes and a methylation-related ferroptosis gene prognostic signature in cervical squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology. 2023, 149(16), 14673-14689. DOI: 10.1007/s00432-023-05267-z

Wang RY, Yu XZ, Ye H, Ao MY, Xi MR, et al. LncRNA FAM83H-AS1 inhibits ferroptosis of endometrial cancer by promoting DNMT1-mediated CDO1 promoter hypermethylation. Journal of Biological Chemistry. 2024, 300(9) 107680. DOI: 10.1016/j.jbc.2024.107680

Wang Y, Situ X, Cardenas H, Siu E, Alhunayan SA, et al. Preclinical Evaluation of NTX-301, a Novel DNA Hypomethylating Agent in Ovarian Cancer. Clinical Cancer Research. 2024, 30(6), 1175-1188. DOI: 10.1158/1078-0432.CCR-23-2368

Wang XH, Liu K, Gong HM, Li DZ, Chu WF, et al. Death by histone deacetylase inhibitor quisinostat in tongue squamous cell carcinoma via apoptosis, pyroptosis, and ferroptosis. Toxicology and Applied Pharmacology. 2021, 410, 115363. DOI: 10.1016/j.taap.2020.115363

He CY, Wang CZ, Liu HS, Shan BE. Kayadiol exerted anticancer effects through p53-mediated ferroptosis in NKTCL cells. BMC Cancer. 2022, 22(1), 724. DOI: 10.1186/s12885-022-09825-5

Wang Y, Yan D, Liu JB, Tang DL, Chen X. Protein modification and degradation in ferroptosis. Redox Biology. 2024, 103259. DOI: 10.1016/j.redox.2024.103259

Xiong J, Nie MF, Fu C, Chai XS, Zhang YJ, et al. Hypoxia Enhances HIF1α Transcription Activity by Upregulating KDM4A and Mediating H3K9me3, Thus Inducing Ferroptosis Resistance in Cervical Cancer Cells. Stem Cells International. 2022, 2022(1), 1608806. DOI: 10.1155/2022/1608806

Xiong J, Chen PX, He L, Chai XS, Zhang YJ, et al. Functional mechanism of hypoxia-like conditions mediating resistance to ferroptosis in cervical cancer cells by regulating KDM4A SUMOylation and the SLC7A11/GPX4 pathway. Environmental Toxicology. 2024, 39(8), 4207-4220. DOI: 10.1002/tox.24304

Wang Z, Shu W, Zhao R, Liu Y, Wang H. Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axis. Apoptosis. 2023, 28(7-8), 1168-1183. DOI: 10.1007/s10495-023-01850-4

Wang C, Zeng J, Li LJ, Xue M, He SL. Cdc25A inhibits autophagy-mediated ferroptosis by upregulating ErbB2 through PKM2 dephosphorylation in cervical cancer cells. Cell Death & Disease. 2021, 12(11), 1055. DOI: 10.1038/s41419-021-04342-y

Xu ZJ, Peng B, Cai Y, Wu GT, Huang JZ, et al. N6-methyladenosine RNA modification in cancer therapeutic resistance: current status and perspectives. Biochemical Pharmacology. 2020, 182, 114258. DOI: 10.1016/j.bcp.2020.114258

Wilkinson E, Cui YH, He YY. Roles of RNA modifications in diverse cellular functions. Frontiers in Cell and Developmental Biology. 2022, 10, 828683. DOI: 10.3389/fcell.2022.828683

Chen JX, Fang X, Zhong PC, Song ZF, Hu XT. N6-methyladenosine modifications: interactions with novel RNA-binding proteins and roles in signal transduction. RNA Biology. 2019, 16(8), 991-1000. DOI: 10.1080/15476286.2019.1620060

Li LJ, Zeng J, He SL, Yang YF, Wang C. METTL14 decreases FTH1 mRNA stability via m6A methylation to promote sorafenib-induced ferroptosis of cervical cancer. Cancer Biology & Therapy. 2024, 25(1), 2349429. DOI: 10.1080/15384047.2024.2349429

Wang YR, Wang C, Guan X, Ma Y, Zhang SJ, et al. PRMT3-Mediated Arginine Methylation of METTL14 Promotes Malignant Progression and Treatment Resistance in Endometrial Carcinoma. Advanced Science. 2023, 10(36), 2303812. DOI: 10.1002/advs.202303812

Gong YM, Luo GF, Zhang SF, Chen YJ, Hu Y. Transcriptome sequencing analysis reveals miR-30c-5p promotes ferroptosis in cervical cancer and inhibits growth and metastasis of cervical cancer xenografts by targeting the METTL3/KRAS axis. Cellular Signalling. 2024, 117, 111068. DOI: 10.1016/j.cellsig.2024.111068

Chen SJ, Zhang J, Zhou T, Rao SS, Li Q, et al. Epigenetically upregulated NSUN2 confers ferroptosis resistance in endometrial cancer via m5C modification of SLC7A11 mRNA. Redox Biology. 2024, 69, 102975. DOI: 10.1016/j.redox.2023.102975

Jiang J, Zhu JM, Qiu P, Ni J, Zhu W, et al. HNRNPA2B1-mediated m6A modification of FOXM1 promotes drug resistance and inhibits ferroptosis in endometrial cancer via regulation of LCN2. Functional & Integrative Genomics. 2023, 24(1), 3. DOI: 10.1007/s10142-023-01279-7

Gong XY, Jiang AL, Shao CX, Jiang Y, Du XX, et al. IGF2BP3 regulates CACNA1A-Mediated Ferroptosis in Ovarian Cancer Through m6A Modification. Available at SSRN 4517182. 2023. DOI: 10.2139/ssrn.4517182

Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Advances in Experimental Medicine and Biology. 2016, 937, 3-17. DOI: 10.1007/978-3-319-42059-2_1

Wang K, Mei S, Cai M, Zhai D, Zhang D, et al. Ferroptosis-related long noncoding RNAs as prognostic biomarkers for ovarian cancer. Frontiers in Oncology. 2022, 12, 888699. DOI: 10.3389/fonc.2022.888699

Yang SY, Ji J, Wang M, Nie JF, Wang SJ. Construction of ovarian cancer prognostic model based on the investigation of ferroptosis-related lncRNA. Biomolecules. 2023, 13(2), 306. DOI: 10.3390/biom13020306

Sadri F, Hosseini SF, Aghayei A, Fereidouni M, Rezaei Z. The Tumor Suppressor Roles and Mechanisms of MiR-491 in Human Cancers. DNA and Cell Biology. 2022, 41(9), 810-823. DOI: 10.1089/dna.2022.0274

Hazari V, Samali SA, Izadpanahi P, Mollaei H, Sadri F, et al. MicroRNA-98: the multifaceted regulator in human cancer progression and therapy. Cancer Cell International. 2024, 24(1), 209. DOI: 10.1186/s12935-024-03386-2

Rezaei Z, Sadri F. MicroRNAs involved in inflammatory breast cancer: oncogene and tumor suppressors with possible targets. DNA and cell biology. 2021, 40(3), 499-512. DOI: 10.1089/dna.2020.6320

Hosseini SF, Javanshir-Giv S, Soleimani H, Mollaei H, Sadri F, et al. The importance of hsa-miR-28 in human malignancies. Biomedicine & Pharmacotherapy. 2023, 161, 114453. DOI: 10.1016/j.biopha.2023.114453

He BX, Zhao ZY, Cai QD, Zhang YQ, Zhang PF, et al. miRNA-based biomarkers, therapies, and resistance in Cancer. International Journal of Biological Sciences. 2020, 16(14), 2628. DOI: 10.7150/ijbs.47203

Brümmer A, Hausser J. MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post‐transcriptional gene regulation. Bioessays. 2014, 36(6), 617-626. DOI: 10.1002/bies.201300104

Noorian M, Chamani E, Salmani F, Rezaei Z, Khorsandi K. Effects of doxorubicin and apigenin on chronic myeloid leukemia cells (K562) in vitro: anti-proliferative and apoptosis induction assessments. Natural Product Research. 2023, 37(19), 3335-3343. DOI: 10.1080/14786419.2022.2069765

Shan C, Liang Y, Wang K, Li P. Noncoding RNAs in cancer ferroptosis: from biology to clinical opportunity. Biomedicine & Pharmacotherapy. 2023, 165, 115053. DOI: 10.1016/j.biopha.2023.115053

Li CX, Wang ZT, Wang YQ, Liu H, Cheng YX. Cheng. MiR-93-5p Inhibits Ovarian Cancer Through SLC7A11-Mediated-Ferroptosis. Heliyon. 2024, 10(15), e35457. DOI: 10.1016/j.heliyon.2024.e35457

Zhang D, Qu B, Hu B, Cao KX, Shen HM. MiR-1-3p enhances the sensitivity of ovarian cancer cells to ferroptosis by targeting FZD7. Journal of Central South University. Medical Sciences. 2022, 47(11), 1512-1521. DOI: 10.11817/j.issn.1672-7347.2022.210800

Luo YL, Chen YB, Jin H, Hou BX, Li HS, et al. The suppression of cervical cancer ferroptosis by macrophages: The attenuation of ALOX15 in cancer cells by macrophages-derived exosomes. Acta Pharmaceutica Sinica B. 2023, 13(6), 2645-2662. DOI: 10.1016/j.apsb.2023.03.025

Wang Y, Wu N, Luo X, Liao QL, Wang J. M2 Macrophages Crosstalk with Ovarian Cancer Cells by Regulating Cell Ferroptosis via the miR-1228-3p/GPX4 Pathway. 2022. DOI: https://doi.org/10.21203/rs.3.rs-1379507/v1

Lu XQ, Zhang WY, Zhang JY, Ren D, Zhao PP, et al. EPAS1, a hypoxia- and ferroptosis-related gene, promotes malignant behaviour of cervical cancer by ceRNA and super-enhancer. Journal of Cellular and Molecular Medicine. 2024, 28(9), e18361. DOI: 10.1111/jcmm.18361

Du HJ, Tang YM, Ren YX, Zhang F, Yang W, et al. A prognostic model for cervical cancer based on ferroptosis-related genes. Frontiers in Endocrinology. 2022, 13, 991178. DOI: 10.3389/fendo.2022.991178

Sun D, Li YC, Zhang XY. Zhang. Lidocaine promoted ferroptosis by targeting miR-382-5p/SLC7A11 axis in ovarian and breast cancer. Frontiers in Pharmacology. 2021, 12, 681223. DOI: 10.3389/fphar.2021.681223

Parsa H, Saravani H, Sameei-Rad F, Nasiri M, Farahaninik Z, et al. Comparing Lavage of the Peritoneal Cavity with Lidocaine, Bupivacaine and Normal Saline to Reduce the Formation of Abdominal Adhesion Bands in Rats. The Malaysian Journal of Medical Sciences: MJMS. 2017, 24(3), 26-32. DOI: 10.21315/mjms2017.24.3.4

Lei JY, Li SX, Li F, Li H, Lei YS. Zinc oxide nanoparticle regulates the ferroptosis, proliferation, invasion and steaminess of cervical cancer by miR-506-3p/CD164 signaling. Cancer Nanotechnology. 2022, 13(1), 33. DOI:10.1186/s12645-022-00134-x

Bridges MC, Daulagala AC, Kourtidis A. Kourtidis. LNCcation: lncRNA localization and function. The Journal of Cell Biology. 2021, 220(2), e202009045. DOI: 10.1083/jcb.202009045

Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 2017, 36(41), 5661-5667. DOI: 10.1038/onc.2017.184

Cai L, Hu XQ, Ye L, Bai PJ, Jie YK, et al. Long non-coding RNA ADAMTS9-AS1 attenuates ferroptosis by Targeting microRNA-587/solute carrier family 7 member 11 axis in epithelial ovarian cancer. Bioengineered. 2022, 13(4), 8226-8239. DOI: 10.1080/21655979.2022.2049470

Dong CL, Dong RF, Song J, Yu CQ, Zhuang YJ, et al. Knockdown of lncRNA EGFR-AS1 promotes autophagy-mediated ferroptosis in cervical cancer via regulating EGFR expression through miR-133b. Molecular & Cellular Toxicology. 2024, 20(1), 139-147. DOI:10.1007/s13273-023-00332-7

Zhang ZH, Li BS, Wang Z, Yang L, Peng JX, et al. Novel LncRNA LINC02936 Suppresses Ferroptosis and Promotes Tumor Progression by Interacting with SIX1/CP Axis in Endometrial Cancer. International Journal of Biological Sciences. 2024, 20(4), 1356-1374. DOI: 10.7150/ijbs.86256

Jin YP, Qiu JP, Lu XF, Ma Y, Li GW. LncRNA CACNA1G-AS1 up-regulates FTH1 to inhibit ferroptosis and promote malignant phenotypes in ovarian cancer cells. Oncol Res. 2023, 31(2), 169-179. DOI: 10.32604/or.2023.027815

Ju Y, Liu X, Na JT, He J, Wu LL, et al. LncRNA TMPO-AS1 Facilitates Cervical Cancer Cell Tumorigenesis and Ferroptosis Resistance via Interaction with LCN2. 2024. DOI:10.21203/rs.3.rs-4441640/v1

Cao L, Wang Y, Liu JN, Bai XY, Chi XH. Long non-coding RNA TPT1-AS1 inhibits ferroptosis in ovarian cancer by regulating GPX4 via CREB1 regulation. American Journal of Reproductive Immunology. 2024, 92(2), e13864. DOI: 10.1111/aji.13864

Qin AJ, Qian QX, Cui XP, Bai WL. Ferroptosis-related lncRNA model based on CFAP58-DT for predicting prognosis and immunocytes infiltration in endometrial cancer. Annals of Translational Medicine. 2023, 11(3), 151. DOI: 10.21037/atm-22-6659

Huang YT, Pan CX, Wu SN, Ye F, Yang LH. A combination of cuproptosis and lncRNAs predicts the prognosis and tumor immune microenvironment in cervical cancer. Discover Oncology. 2024, 15(1), 116. DOI: 10.1007/s12672-024-00964-8

Chen L, Wang CL, Sun HY, Wang JX, Liang YC, et al. The bioinformatics toolbox for circRNA discovery and analysis. Briefings in Bioinformatics. 2021, 22(2), 1706-1728. DOI: 10.1093/bib/bbaa001

Seyedi D, Espandar N, Hojatizadeh M, Mohammadi Y, Sadri F, et al. Noncoding RNAs in rheumatoid arthritis: modulators of the NF-κB signaling pathway and therapeutic implications. Frontiers in Immunology. 2024, 15, 1486476. DOI: 10.3389/fimmu.2024.1486476

Wang JF, Zhao XH, Wang YB, Ren FH, Sun DW, et al. circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death & Disease. 2020, 11(1), 32. DOI: 10.1038/s41419-020-2230-9

Liu ZQ, Wang Q, Wang X, Xu ZZ, Wei XQ, et al. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discovery. 2020, 6(1), 72. DOI: 10.1038/s41420-020-00306-x

Wu P, Li CX, Ye DM, Yu KN, Li YX, et al. Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis. Aging (Albany NY). 2021, 13(3), 4663-4673. DOI: 10.18632/aging.202518

Liu YC, Li L, Yang Z, Wen D, Hu ZY. Circular RNA circACAP2 Suppresses Ferroptosis of Cervical Cancer during Malignant Progression by miR-193a-5p/GPX4. Journal of Oncology. 2022, 2022, 5228874. DOI: 10.1155/2022/5228874

Wei W, Wang N, Lin L. Prognostic Value of hsa_circ_0007615 in Epithelial Ovarian Cancer and its Regulatory Effect on Tumor Progression. Hormone and Metabolic Research. 2023, 55(11), 801-808. DOI: 10.1055/a-2119-3229

Qin KY, Zhang FH, Wang HX, Wang N, Qiu HB, et al. circRNA circSnx12 confers Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-194-5p/SLC7A11 axis. BMB Reports. 2023, 56(2), 184-189. DOI: 10.5483/BMBRep.2022-0175

Zhang J, Chen SJ, Wei ST, Cheng SS, Shi R, et al. CircRAPGEF5 interacts with RBFOX2 to confer ferroptosis resistance by modulating alternative splicing of TFRC in endometrial cancer. Redox Biology. 2022, 57, 102493. DOI: 10.1016/j.redox.2022.102493

Downloads

Published

2025-04-08

How to Cite

Vajihe Hazari, Leila Shahsavari, & Sadri, F. (2025). Exploring Ferroptosis and Epigenetic Regulation in Gynecological Cancers: Implications for Treatment Strategies. Journal of Cancer Biomoleculars and Therapeutics, 2(2), 37–54. https://doi.org/10.62382/jcbt.v2i2.59

Issue

Section

Articles